Experimental and numerical investigation on shell and coil storage unit with biodegradable PCM for modular thermal battery applications - Publication - Bridge of Knowledge

Search

Experimental and numerical investigation on shell and coil storage unit with biodegradable PCM for modular thermal battery applications

Abstract

Thermal energy storage (TES) in automotive applications is currently growing in importance. TES can visibly reduce primary energy consumptions, decrease CO2 emission, and improve thermal comfort in electric as well as hybrid vehicles. However, to meet the new ambitious target (15% reduction of CO2 emissions in the new cars until 2025) it is required to use plug-in electric vehicles. For this reason, this paper focuses on the optimization of key coil designing parameters. For the reference geometry, both experimental and CFD results have been presented. The optimization of coil geometrical parameters has been carried out based on numerical modelling. The prototype of TES is proposed as a honeycomb battery of individual modules. The results show that increasing the diameter and pitch of the coil decreases the melting and solidification time by 13.2% and 11.8% respectively for chosen geometry. CFD calculation has also been made for TES with a hexagonal geometry. The best results were obtained for the TES with a cylindrical shell. However, the results for the TES with hexagonal shell were, very similar (the difference was less than 1% of the share of the liquid phase). It is seen that presented coil optimization is also a good fit for TES with hexagonal shell geometry.

Citations

  • 4

    CrossRef

  • 0

    Web of Science

  • 4

    Scopus

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
INTERNATIONAL JOURNAL OF THERMAL SCIENCES no. 185,
ISSN: 1290-0729
Language:
English
Publication year:
2023
Bibliographic description:
Andrzejczyk R., Muszyński T., Tomasz K., Saqib M.: Experimental and numerical investigation on shell and coil storage unit with biodegradable PCM for modular thermal battery applications// INTERNATIONAL JOURNAL OF THERMAL SCIENCES -Vol. 185, (2023), s.108076-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.ijthermalsci.2022.108076
Sources of funding:
  • COST_FREE
Verified by:
Gdańsk University of Technology

seen 108 times

Recommended for you

Meta Tags