Experimental and theoretical studies on the photodegradation of 2-ethylhexyl 4-methoxycinnamate in the presence of reactive oxygen and chlorine species - Publication - Bridge of Knowledge

Search

Experimental and theoretical studies on the photodegradation of 2-ethylhexyl 4-methoxycinnamate in the presence of reactive oxygen and chlorine species

Abstract

2-Ethylhexyl 4-methoxycinnamate (EHMC) is one of the most commonly used sunscreen ingredient. In this study we investigated photodegradation of EHMC in the presence of such common oxidizing and chlorinating systems as H2O2, H2O2/HCl, H2O2/UV, and H2O2/HCl/UV. Reaction products were detected by gas chromatography with a mass spectrometric detector (GC-MS). As a result of experimental studies chloro-substituted 4-methoxycinnamic acid (4-MCA), 4-methoxybenzaldehyde (4-MBA) and 4-methoxyphenol (4-MP) were identified. Experimental studies were enriched with DFT and MP2 calculations. We found that reactions of 4-MCA, 4-MBA and 4-MP with Cl2 and HOCl were in all cases thermodynamically favorable. However, reactivity indices provide a better explanation of the formation of particular chloroorganic compounds. Generally, those isomeric forms of mono- and dichlorinated compounds which exhibits the highest hardness were identified. Nucleophilicity of the chloroorganic compounds precursors were examined by means of the Fukui function.

Citations

  • 1 9

    CrossRef

  • 0

    Web of Science

  • 3 3

    Scopus

Authors (4)

Cite as

Full text

download paper
downloaded 28 times
Publication version
Submitted Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Magazine publication
Type:
Magazine publication
Published in:
CENTRAL EUROPEAN JOURNAL OF CHEMISTRY no. 12, edition 5, pages 612 - 623,
ISSN: 1895-1066
Publication year:
2014
DOI:
Digital Object Identifier (open in new tab) 10.2478/s11532-014-0522-6
Bibliography: test
  1. Experimental and theoretical studies on the photodegradation of 2-ethylhexyl 4-methoxycinnamate in the presence of reactive oxygen and chlorine species Cent. Eur. J. Chem. 10, 989 (2012) open in new tab
  2. S. Pattanaargson, P. Limphong, Int. J. Cosmetic. Sci. 23, 153 (2001) open in new tab
  3. N. Tarras-Wahlberg, G. Stenhagen, O. Larkö, A. Rosén, A.-M. Wennberg, O. Wennerström, J. Invest. Dermatol. 113, 547 (1999) open in new tab
  4. J. Gaca, S. Żak Hydrogen peroxide and chlorides, examples of application and theoretical aspects (University of Technology and Agriculture in Bydgoszcz Publishers, Poland, 2004) (in Polish)
  5. M. Nakajima, T. Kawakami, T. Niino, Y. Takahashi, S. Onodera, J. Health. Sci. 55, 363 (2009) open in new tab
  6. A. Gackowska, J. Gaca, Chemik 4, 301 (2011)
  7. N. Higashi, A. Ikehata, N. Kariyama, Y. Ozaki, Appl. Spectrosc. 62, 1022 (2008) open in new tab
  8. P. Cysewski, A. Gackowska, J. Gaca, Chemosphere 63, 165 (2006) open in new tab
  9. C.W. Jones, Applications of hydrogen peroxide and derivatives (Royal Society of Chemistry, Cambridge 1999)
  10. A.D. Becke, Phys. Rev. A 38, 3098 (1988) open in new tab
  11. A.D. Becke, J. Chem. Phys. 98, 5648 (1993) open in new tab
  12. B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200 (1989) open in new tab
  13. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988) open in new tab
  14. S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys. 55, 117 (1981) open in new tab
  15. S. Miertuš, J. Tomasi, Chem. Phys. 65, 239 (1982) open in new tab
  16. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision E. 01 (Gaussian, Inc., Pittsburgh PA, 2004)
  17. R.G. Pearson, Proc. Natl. Acad. Sci. USA 83, 8440 (1986) open in new tab
  18. R.G. Parr, L. von Szentpály, S. Liu, J. Am. Chem. Soc. 121, 1922 (1999) open in new tab
  19. C. Møller, M.S. Plesset, Phys. Rev. 46, 0618 (1934) open in new tab
  20. M. Head-Gordon, J.A. Pople, M.J. Frisch, Chem. Phys. Lett. 153, 503 (1988) open in new tab
  21. S. Saebø, J. Almlöf, Chem. Phys. Lett. 154, 83 (1989)
  22. M.J. Frisch, M. Head-Gordon, J.A. Pople, Chem. Phys. Lett. 166, 275 (1990) open in new tab
  23. M.J. Frisch, M. Head-Gordon, J.A. Pople, Chem. Phys. Lett. 166, 281 (1990) open in new tab
  24. M. Head-Gordon, T. Head-Gordon, Chem. Phys. Lett. 220, 122 (1994) open in new tab
  25. J. Kruszewski, T.M. Krygowski, Tetrahedron Lett. 13, 3839 (1972) open in new tab
  26. T.M. Krygowski, M.K. Cyrański, Z. Czarnocki, G. Haäfelinger, A.R. Katritzky, Tetrahedron 56, 1783 (2000) open in new tab
  27. W. Yang, W.J. Mortier, J. Am. Chem. Soc. 108, 5708 (1986) open in new tab
  28. S. Pattanaargson, T. Munhapol, P. Hirumsupachot, P. Luangthongaram, J. Photochem. Photobiol. A 161, 269 (2004) open in new tab
  29. S.P. Huong, V. Andrieu, J.-P. Reynier, E. Rocher, J.-D. Fourneron , J. Photochem. Photobiol. A 186, 65 (2007) open in new tab
  30. P. Renard, F. Siekmann, A. Gandolfo, J. Socorro, G. Salque, S. Ravier, E. Quivet, J.-L. Clément, M. Traikia, A.-M. Delort, D. Voisin, V. Vuitton, R. Thissen, A. Monod, Atmos. Chem. Phys. 13, 6473 (2013) open in new tab
  31. N. De la Cruz, J. Giménez, S. Esplugas, D. Grandjean, L.F. de Alencastro, C. Pulgarín Water Res. 46, 1947 (2012) open in new tab
  32. M. Czaplicka, J. Hazard. Mater. 134, 45 (2006) open in new tab
  33. X.-W. Li, E. Shibata, T. Nakamura, Mater. Trans. 44, 2441 (2003) open in new tab
  34. M.V. Roux, M. Temprado, J.S. Chickos, Y. Nagano, J. Phys. Chem. Ref. Data 37, 1855 (2008) open in new tab
  35. V.A. Platonov, Yu.N. Simulin Russ. J. Phys. Chem. 59, 179 (1985)
  36. J.D. Cox, D.D. Wagman, V.A. Medvedev, CODATA Key Values for Thermodynamics (Hemisphere Publishing Corp, New York, 1984)
  37. M.W. Chase, NIST-JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data, Monograph 9, 4th edition (American Chemical Society, American Institute of Physics, Washington, DC, 1998) open in new tab
  38. M. Bekbolet, Z. Çınar, M. Kılıç, C.S. Uyguner, C. Minero, E. Pelizzetti, Chemosphere 75, 1008 (2009) open in new tab
  39. E. Zahedi, S. Ali-Asgari, V. Keley, Cent. Eur. J. Chem. 8, 1097 (2010) open in new tab
  40. R. Taylor, in: C.H. Bamford, C.F.H. Tipper (Eds.), Comprehensive chemical kinetics, (Elsevier Publishing Co, Amsterdam/New York, 1972) Volume 13: Reactions of aromatic compounds, 1
  41. G.S. Hammond, J. Am. Chem. Soc. 77, 334 (1955) open in new tab
  42. T.E. Jones, J. Phys. Chem. A 116, 4233 (2012) open in new tab
  43. Md.E.U. Hoque, H.W. Lee, Bull. Korean. Chem. Soc. 32, 2109 (2011)
  44. M. Przybyłek, J. Gaca, Chem. Pap. 66, 699 (2012) open in new tab
  45. V. Benin, J. Mol. Struc. (Theochem) 764, 21 (2006) H.D. Banks, J. Org. Chem. 68, 2639 (2003) C. Hansch, A. Leo, R.W. Taft, Chem. Rev. 91, 165 (1991)
Verified by:
No verification

seen 113 times

Recommended for you

Meta Tags