Experimental validation of pressure drop models during flow boiling of R134a – effect of flow acceleration and entrainment - Publication - Bridge of Knowledge

Search

Experimental validation of pressure drop models during flow boiling of R134a – effect of flow acceleration and entrainment

Abstract

A crucial step to assure proficient work of power and process apparatus is their proper design. A wide array of those devices operates within boiling or condensation of the working fluid to benefit from high heat transfer rates. Two-phase flows are associated with high heat transfer coefficients because of the latent heat of evaporation and high turbulence level between the liquid and the solid surface. Predicting heat transfer coefficient and pressure drop is a challenging task, and has been pursued by researchers for decades. In the case of diabatic flows, the total pressure drop is due to the change in kinetic and potential energy. The article presents detailed boiling pressure drops data for R134a at a saturation temperature of 19.4oC. Study cases have been set for a mass flux varying from 300 to 500 kg/m2s. Presented data along with the data reduction procedure was used to obtain the momentum pressure drop values during flow boiling. The study focuses on experimental values of momentum pressure drop component and its prediction based on various void fraction models and entrainment effects.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 32 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Conference activity
Type:
materiały konferencyjne indeksowane w Web of Science
Published in:
MATEC Web of Conferences no. 240, pages 1 - 5,
ISSN: 2261-236X
Title of issue:
XI International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2018) strony 1 - 5
Language:
English
Publication year:
2018
Bibliographic description:
Muszyński T., Andrzejczyk R., Dorao C..: Experimental validation of pressure drop models during flow boiling of R134a – effect of flow acceleration and entrainment, W: XI International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2018), 2018, ,.
DOI:
Digital Object Identifier (open in new tab) 10.1051/matecconf/201824003010
Bibliography: test
  1. B. Igliński, G. Piechota, A. Iglińska, M. Cichosz, R. Buczkowski, Clean Technol. Environ. Policy. 18, 45-61 (2016) open in new tab
  2. T. Muszynski, Appl. Therm. Eng. 115, 782-792 (2017) open in new tab
  3. P. Ostrowski, M. Pronobis, L. Remiorz, Appl. Therm. Eng. 84, 390-398 (2015) open in new tab
  4. G. Besagni, R. Mereu, G. Di Leo, F. Inzoli, Int. J. Refrig. 58, 154-171 (2015) open in new tab
  5. D. Taler, P. Ocłoń, Chem. Eng. Process. Process Intensif. 83, 1-11 (2014) open in new tab
  6. T. Muszynski, S.M. Koziel, Arch. Thermodyn. 37, 45-62 (2016) open in new tab
  7. R. Andrzejczyk, T. Muszynski, Arch. Thermodyn. 38, 3-21 (2017) open in new tab
  8. T. Bohdal, H. Charun, M. Sikora, Int. J. Refrig. 59, 210-223 (2015) open in new tab
  9. T. Muszynski, D. Mikielewicz, Appl. Therm. Eng. 93, 1403-1409 (2016) open in new tab
  10. R. Andrzejczyk, T. Muszyński, Arch. Thermodyn. 37, 137-159 (2016), open in new tab
  11. R. Andrzejczyk, T. Muszynski, Appl. Therm. Eng. 121, 115-125 (2017) open in new tab
  12. T. Muszynski, R. Andrzejczyk, Appl. Therm. Eng. 93, 1360-1366 (2016) open in new tab
  13. J.R. Thome, Engineering data book III (Wolver. Tube Inc. 2010) open in new tab
  14. Y. Xu, X. Fang, Appl. Therm. Eng. 64, 242- 251 (2014) open in new tab
  15. R. Revellin, P. Haberschill, Int. J. Refrig. 32, 487- 497 (2009) open in new tab
  16. J.M. Quiben, J.R. Thome, Int. J. Heat Fluid Flow. 28, 1060-1072 (2007)
  17. R. Andrzejczyk, T. Muszynski, C. Alberto Dorao, Exp. Therm. Fluid Sci. 83, 78-87 (2017) open in new tab
  18. M. Zhang, R.L. Webb, Exp. Therm. Fluid Sci. 25, 131-139 (2001) open in new tab
  19. J. Garcia, M.P. Porto, R. Revellin, J. Bonjour, L. Machado, Int. J. Refrig. 73, 163-174 (2017) open in new tab
  20. A. Cicchitti, C. Lombardi, M. Silvestri, Energ. Nucl. 7, 417-425 (1960)
  21. L. Sun, K. Mishima, Int. J. Multiph. Flow. 35, 47-54 (2009) open in new tab
  22. E.W. Lemmon, M.L. Huber, M.O. McLinden, Phys. Chem. Prop. (NIST 2010)
  23. B.N. Taylor, C.E. Kuyatt, NIST Tech. Note. 1297 20 (1994) open in new tab
  24. Y. Xu, X. Fang, D. Li, G. Li, Y. Yuan, A. Xu, Int. J. Heat Mass Transf. 98, 150-163 (2016) open in new tab
  25. K. Aroonrat, S. Wongwises, Int. J. Heat Mass Transf. 106, 437-448 (2017) open in new tab
  26. R. Revellin, Experimental two-phase fluid flow in microchannel (EPFL, 2005)
  27. [27] R. Charnay, R. Revellin, J. Bonjour, Int. J. Refrig. 54, 98-125 (2015) open in new tab
  28. T. Muszyński, R. Andrzejczyk, C.A. Dorao, Arch. Thermodyn. 38, 101-118 (2017) open in new tab
  29. T. Muszynski, R. Andrzejczyk, C.A. Dorao, Int. J. Refrig. 82, 163-173 (2017) open in new tab
  30. C.B. Tibiriçá, D.M. Rocha, I.L.S. Sueth, G. Bochio, G.K.K. Shimizu, M.C. Barbosa, S. dos S. Ferreira, Appl. Therm. Eng. 126, 774-795 (2017) open in new tab
  31. S.E. Haaland, J. Fluids Eng. 105, 89-90 (1983)
Verified by:
Gdańsk University of Technology

seen 87 times

Recommended for you

Meta Tags