Extraction with environmentally friendly solvents - Publication - Bridge of Knowledge


Extraction with environmentally friendly solvents


The ever-increasing demand for determining compounds at low concentration levels in complex matrices requires a preliminary step of analytes isolation/enrichment in order to employ a detection technique characterized by high sensitivity at low LOQ. Sample preparation is considered as crucial part of analytical procedures. Previously the parameter of “greenness” is as important as selectivity in order to avoid using harmful organic solvents in sustainable extraction techniques. These solvents can generate hazardous, toxic waste while consuming large resources volume. Developing new green solvents is one of the key subjects in Green Chemistry in order to reduce the intensity of anthropogenic activities related to analytical laboratories. A lot of new, more eco-friendly media have been employed as extractant phases. These media, besides of being more eco-friendly, provide shorter extraction times, simplicity, low cost, better selectivity in some cases. The most promising, most widely used green extraction solvents are described in this review.


  • 1 7 4


  • 1 6 0

    Web of Science

  • 1 7 3


Cite as

Full text

download paper
downloaded 1299 times
Publication version
Accepted or Published Version
Creative Commons: CC-BY-NC-ND open in new tab



artykuł w czasopiśmie wyróżnionym w JCR
Published in:
ISSN: 0165-9936
Publication year:
Bibliographic description:
Płotka-Wasylka J., Rutkowska M., Owczarek K., Tobiszewski M., Namieśnik J.: Extraction with environmentally friendly solvents// TRAC-TRENDS IN ANALYTICAL CHEMISTRY. -Vol. 91, (2017), s.12-25
Digital Object Identifier (open in new tab) 10.1016/j.trac.2017.03.006
Bibliography: test
  1. Z. Li, K.H. Smith, G.W. Stevens, The use of environmentally sustainable bio- derived solvents in solvent extraction applicationsda review, Chin. J. Chem. Eng. 24 (2016) 215e220. open in new tab
  2. A. Gałuszka, Z. Migaszewski, J. Namie snik, The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices, TrAC 50 (2013) 78e84. open in new tab
  3. C. Capello, U. Fischer, K. Hungerbühler, What is a green solvent? A compre- hensive framework for the environmental assessment of solvents, Green Chem. 9 (2007) 927e934. open in new tab
  4. S.B. Hawthorne, Y. Yang, D.J. Miller, Extraction of organic pollutants from environmental solids with sub-and supercritical water, Anal. Chem. 66 (1994) 2912e2920. open in new tab
  5. C.C. Teo, S.N. Tan, J.W.H. Yong, C.S. Hew, E.S. Ong, Pressurized hot water extraction (PHWE), J. Chromatogr. A 1217 (2010) 2484. open in new tab
  6. M. Herrero, M. Castro-Puyana, J.A. Mendiola, E. Ibañez, Compressed fluids for the extraction of bioactive compounds, TrAC 43 (2013) 67e83. open in new tab
  7. M. Herrero, J.A. Mendiola, A. Cifuentes, E. Ib añez, Supercritical fluid extraction: recent advances and applications, J. Chromatogr. A 1217 (2010) 2495e2511. open in new tab
  8. B. Kudłak, K. Owczarek, J. Namie snik, Selected issues related to the toxicity of ionic liquids and deep eutectic solvents e a review, Environ. Sci. Pollut. Res. 22 (2015) 11975e11992. open in new tab
  9. Y.H. Choi, J. van Spronsen, Y.T. Dai, M. Verberne, F. Hollmann, I. Arends, G.J. Witkamp, R. Verpoorte, Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 156 (2011) 1701e1705. open in new tab
  10. E. Paleologos, D. Giokas, M. Karayannis, Micelle-mediated separation and cloud-point extraction, TrAC 24 (2005) 426e436. open in new tab
  11. Z. Ferrera, C. Padron Sanz, C. Mahugo Santana, J. Santana Rodriguez, The use of micellar systems in the extraction and pre-concentration of organic pollutants in environmental samples, TrAC 23 (2004) 469e479.
  12. C. Padron Sanz, R. Halko, Z. Sosa Ferrera, J.J. Santana Rodriguez, Micellar extraction of organophosphorus pesticides and their determination by liquid chromatography, Anal. Chim. Acta 524 (2004) 265e270.
  13. A. Hernandez-Martinez, C. Padron Sanz, Determination of Ni, Cr, Cu, Pb and Cd on the Mediterranean endemic plant Posidonia oceanica using the green extraction method "microwave assisted micellar extraction" and GFAAS, Anal. Methods 5 (2013) 6473e6479. open in new tab
  14. B. Froschl, G. Stangl, R. Niesser, Combination of micellar extraction and GC- ECD for the determination of polychlorinated biphenyls (PCBs) in water, Fresenius J. Anal. Chem. 357 (1997) 743e746. open in new tab
  15. M. Roosta, M. Ghaedi, A. Daneshfar, Optimisation of ultrasound-assisted reverse micelles dispersive liquid-liquid microextraction by Box-Behnken design for determination of acetoin in butter followed by high performance liquid chromatography, Food Chem. 161 (2014) 120e126. open in new tab
  16. A. Ballesteros-G omez, M.D. Sicilia, S. Rubio, Supramolecular solvents in the extraction of organic compounds. A review, Anal. Chim. Acta 677 (2010) 108e130. open in new tab
  17. M. Herrero, A. Cifuentes, E. Ibanez, Sub-and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by- products, algae and microalgae. A review, Food Chem. 98 (2006) 136e148. open in new tab
  18. C.G. Pereira, M.A.M. Meireles, Supercritical fluid extraction of bioactive com- pounds: fundamentals, applications and economic perspectives, Food Bio- process. Technol. 3 (2010) 340e372. open in new tab
  19. F. Sahena, I.S.M. Zaidul, S. Jinap, A.A. Karim, K.A. Abbas, N.A.N. Norulaini, A.K.M. Omar, Application of supercritical CO 2 in lipid extraction e a review, J. Food Eng. 95 (2009) 240e253. open in new tab
  20. R. Mohamed, M. Saldana, P. Mazzafera, Extraction of caffeine, theobromine, cocoa butter from Brazilian cocoa beans using supercritical CO 2 and ethane, Ind. Eng. Chem. Res. 41 (2002) 6751e6758. open in new tab
  21. O. Catchpole, J. Grey, N.B. Perry, E.J. Burgess, W. Redmont, N. Porter, Extraction of chilli, black pepper and ginger with near-critical CO 2 , propane and dimethyl ether. Analysis of extracts by quantitative nuclear magnetic resonance, J. Agric. Food Chem. 51 (2003) 4853e4860. open in new tab
  22. M. Sun, F. Temelli, Supercritical carbon extraction of carotenoids from carrot using canola oil as a continuous co-solvent, J. Supercrit. Fluids 37 (2006) 397e408. open in new tab
  23. M.A. Shabkhiz, M.H. Eikani, Z. Bashiri Sadr, F. Golmohammad, Superheated water extraction of glycyrrhizic acid from licorice root, Food Chem. 210 (2016) 396e401. open in new tab
  24. N. Rahimi, M. Shiva, S. Ali Mortazavi, A. Hossein Elhamirad, A. Majid Maskooki, G. Rajabzadeh, Kinetic study of superheated water extraction of berberine from Berberis vulgaris root, Bulg. Chem. Commun. 47 (Special Issue D) (2015) 140e146.
  25. T. Hyotylainen, T. Andersson, K. Hartonen, K. Kuosmanen, M.-L. Riekkola, Pressurized hot water extraction coupled on-line with LC-GC: determination of polyaromatic hydrocarbons in sediment, Anal. Chem. 72 (2000) 3070e3076. open in new tab
  26. A.E. McGowin, K.K. Adom, A. Obubuafo, Screening of compost for PAHs and pesticides using static subcritical water extraction, Chemosphere 45 (2001) 857e864. open in new tab
  27. B. van Bavel, K. Hartonen, C. Rappe, M.-L. Riekkola, Analyst 124 (1999) 1351. open in new tab
  28. R.L. Vekariya, A review of ionic liquids: applications towards catalytic organic transformations, J. Mol. Liq. 227 (2017) 44e60. open in new tab
  29. T.D. Ho, C. Zhang, L.W. Hantao, J.L. Anderson, Ionic liquids in analytical chemistry: fundamentals, advances and perspectives, Anal. Chem. 86 (2014) 262e285. open in new tab
  30. E. Stanisz, J. Werner, A. Zgoła-Grze skowiak, Liquid-phase microextraction techniques based on ionic liquids for preconcentration and determination of metals, TrAC 61 (2014) 54e66. open in new tab
  31. C. Jiang, S. Wei, X. Li, Y. Zhao, M. Shao, H. Zhang, A. Yu, Ultrasonic nebulization headspace ionic liquid-based single drop microextraction of flavour com- pounds in fruit juices, Talanta 106 (2013) 237e247. open in new tab
  32. L. Vidal, A. Chisvert, A. Canals, A. Salvador, Sensitive determination of free benzophenone-3 in human urine samples based on an ionic liquid as extractant phase in single-drop microextraction prior to liquid chromatog- raphy analysis, J. Chromatogr. A 1174 (2007) 95e103. open in new tab
  33. E.M. Martinis, P. Berton, R.G. Wuilloud, Ionic liquid-based microextraction techniques for trace-element analysis, TrAC 60 (2014) 54e70. open in new tab
  34. Q. Zhou, H. Bai, C. Xie, J. Xiao, Trace determination of organophosphorous pesticides in environmental samples by temperature-controlled ionic liquid dispersive liquid-liquid microextraction, J. Chromatogr. A 1188 (2008) 148e153. open in new tab
  35. A. Gure, F.J. Lara, A.M. Garcia-Campana, N. Megersa, M. Del Olmo-Iurela, Vortex-assisted ionic liquid dispersive liquid-liquid microextraction for the determination of sulfonylurea herbicides in wine samples by capillary high- performance liquid chromatography, Food Chem. 170 (2015) 348e353. open in new tab
  36. R. Weng, X. Qi, L. Zhao, S. Liu, S. Gao, X. Ma, Y. Deng, Ionic-liquid-based dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the forensic determination of methamphetamine in human urine, J. Sep. Sci. 39 (2016) 2444e2450.
  37. J. Abulhassani, J.L. Manzoori, M. Amjadi, Hollow fiber based-liquid phase microextraction using ionic liquid solvent for preconcentration of lead and nickel from environmental and biological samples prior to determination by electrothermal atomic absorption spectrometry, J. Hazard. Mater. 176 (2010) 481e486. open in new tab
  38. H. Chen, J. Han, Y. Wang, Y. Hu, L. Ni, Y. Liu, W. Kang, Y. Liu, Hollow fiber liquid-phase microextraction of cadmium(II) using an ionic as the extractant, Microchim. Acta 181 (2014) 1455e1461. open in new tab
  39. J. Płotka-Wasylka, K. Owczarek, J. Namie snik, Modern solutions in the field of microextraction using liquid as a medium of extraction, TrAC 85 (2016) 46e64. open in new tab
  40. J. Wang, S. Huang, P. Wang, Yang, Method development for the analysis of phthalate esters in tea beverages by ionic liquid hollow fibre liquid-phase microextraction and liquid chromatographic detection, Food Control 67 (2016) 278e284. open in new tab
  41. Y. Tao, J.-F. Liu, X.-L. Hu, H.-C. Li, T. Wang, G.-B. Jiang, Hollow fiber supported ionic liquid membrane microextraction for determination of sulfonamides in environmental water samples by high-performance liquid chromatography, J. Chromatogr. A 1216 (2015) 6259e6266. open in new tab
  42. T.D. Ho, A. Canestraro, J. Anderson, Ionic liquids in solid-phase micro- extraction: a review, Anal. Chim. Acta 695 (2011) 18e43. open in new tab
  43. M. Hayyan, M.A. Hashim, A. Hayyan, M.A. Al-Saadi, I.M. AlNashef, M.E.S. Mirghani, O.K. Saheed, Are deep eutectic solvents benign or toxic? Chemosphere 90 (2013) 2193e2195. open in new tab
  44. Y. Zhang, X. Ji, X. Lu, Choline-based deep eutectic solvents for mitigating carbon dioxide emissions, in: B. Morreale, F. Shi (Editors), Novel Materials for Carbon Dioxide Mitigation Technology, Elsevier, Pittsburgh, USA, 2015, pp. 87e115. open in new tab
  45. S. Khandelwal, Y. Kumar Tailor, M. Kumar, Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic trans- formations, J. Mol. Liq. 215 (2016) 345e386. open in new tab
  46. S.-H. Wu, A.R. Caparanga, R.B. Leron, M.-H. Li, Vapor pressure of aqueous choline chloride-based deep eutectic solvents (ethaline, glyceline, maline and reline) at 30e70 C, Thermochim. Acta 544 (2012) 1e5. open in new tab
  47. A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, R.K. Rasheed, Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile al- ternatives to ionic liquids, J. Am. Chem. Soc. 126 (2004) 9142e9147. open in new tab
  48. H.-R. Jhong, D. Shan-Hill Wong, C.-C. Wan, Y.-Y. Wang, T.-C. Wei, A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells, Electrochem. Commun. 11 (2009) 209e221. open in new tab
  49. L. Liu, Y. Kong, H. Xu, J.P. Li, J.X. Dong, Z. Lin, Ionothermal synthesis of a three- dimensional zinc phosphate with DFT topology using unstable deep-eutectic solvent as template-delivery agent, Micropor. Mesopor. Mater. 115 (2008) 624e628. open in new tab
  50. E.R. Parnham, E.A. Drylie, P.S. Wheatley, A.M.Z. Slawin, R.E. Morris, Ion- othermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents, Angew. Chem. 118 (2006) 5084e5088. open in new tab
  51. A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures, Chem. Commun. (2003) 70e71. open in new tab
  52. M. Balal Arain, E. Yilmaz, M. Soylak, Deep eutectic solvent based ultrasonic assisted liquid phase microextraction for the FAAS determination of cobalt, J. Mol. Liq. 224 (2016) 538e543. open in new tab
  53. E.R. Cooper, C.D. Andrews, P.S. Wheatley, P.B. Webb, P. Wormald, R.E. Morris, Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues, Nature 430 (2004) 1012e1016. open in new tab
  54. H.G. Morrison, C.C. Sun, S. Neervannan, One-pot-nucleophilic fluorination of acetophenones in a deep eutectic solvent, Int. J. Pharm. 378 (2009) 136e139.
  55. D. Lindberg, M.D. Revenga, M. Widersten, Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis, J. Biotechnol. 147 (2010) 169e171. open in new tab
  56. G. Morrison, C.C. Sun, S. Neervannan, Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles, Int. J. Pharm. 378 (2009) 136e139. open in new tab
  57. W.C. Su, D.S.H. Wong, M.H. Li, Effect of water on solubility of carbon dioxide in (aminomethanamide þ 2-hydroxy-n,n,n-trimethylethanaminium chloride), J. Chem. Eng. Data 54 (2009) 1951e1955. open in new tab
  58. Y. Dai, J. van Spronsen, G.-J. Witkamp, R. Verpoorte, Y. Hae Choi, Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents, J. Nat. Prod. 76 (2013) 2162e2173. open in new tab
  59. K. Owczarek, N. Szczepa nska, J. Płotka-Wasylka, M. Rutkowska, O. Shyshchak, M. Bratychak, J. Namie snik, Natural deep eutectic solvents in extraction pro- cess, Ch&ChT 10 (2016) 601e606.
  60. Y. Dai, J. van Spronsen, G.J. Witkamp, R. Verpoorte, Y.H. Choi, Natural deep eutectic solvents as new potential media for green technology, Anal. Chim. Acta 766 (2013) 61e68. open in new tab
  61. Y. Dai, G.J. Witkamp, R. Verpoorte, Y.H. Choi, Tailoring properties of natural deep eutectic solvents with water to facilitate their applications, Food Chem. 187 (2015) 14e19. open in new tab
  62. Y. Dai, R. Verpoorte, Y.H. Choi, Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius), Food Chem. 159 (2014) 116e121. open in new tab
  63. M. Martins, I.M. Aroso, R.L. Reis, A.R.C. Duarte, R. Craveiro, A. Paiva, Enhanced performance of supercritical fluid foaming of natural-based polymers by deep eutectic solvents, AIChE J. 60 (2014) 3701e3706. open in new tab
  64. Z. Wei, X. Qi, T. Li, M. Luo, W. Wang, Y. Zu, et al., Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra-performance liquid chromatography, Sep. Purif. Technol. 149 (2015) 237e244. open in new tab
  65. M.C. Gutierrez, M.L. Ferrer, C.R. Mateo, F.D. Monte, Freeze-drying of aqueous solutions of deep eutectic solvents: a suitable approach to deep eutectic suspensions of self-assembled structures, Langmuir 25 (2009) 5509e5515. open in new tab
  66. M. Cvjetko Bubalo, S. Vidovi c, I. Radoj ci c Redovnikovi c, S. Joki c, Green solvents for green technologies, J. Chem. Technol. Biotechnol. 90 (2015) 1631e1639.
  67. L. Lomba, B. Giner, I. Bandres, C. Lafuente, M.a.R. Pino, Physicochemical properties of green solvents derived from biomass, Green Chem. 13 (8) (2011) 2062e2070. open in new tab
  68. J.I. Garcia, H. Garcia-Marin, J.A. Mayoral, P. Perez, Green solvents from glyc- erol. Synthesis and physico-chemical properties of alkyl glycerol ethers, Green Chem. 12 (3) (2010) 426e434. open in new tab
  69. D.S. Flett, J. Melling, M. Cox, Commercial Solvent Systems for Inorganic Pro- cesses, Handbook of Solvent Extraction, John Wiley & Sons, New York; Chi- chester; Brisbane; Toronto;
  70. Singapore, 1983, pp. 629e647.
  71. B. Moser, Biodiesel production, properties, and feedstocks, in: D. Tomes, P. Lakshmanan, D. Songstad (Editors), Biofuels, Springer, New York, 2011, pp. 285e347. open in new tab
  72. S.K. Hoekman, A. Broch, C. Robbins, E. Ceniceros, M. Natarajan, Review of biodiesel composition, properties, and specifications, Renew. Sust. Energ Rev. 16 (2012) 143e169. open in new tab
  73. M. Made, Z.-Q. Tan, R. Liu, J.-F. Liu, Nanofluid of zinc oxide nanoparticles in ionic liquid for single drop liquid microextraction of fungicides in environ- mental waters prior to high performance liquid chromatographic analysis, J. Chromatogr. A 1395 (2015) 7e15.
  74. G. Ren, Q. Huang, J. Wu, J. Yuan, G. Yang, Z. Yan, Cloud point extraction-HPLC method for the determination and pharmacokinetic study of aristolochic acids in rat plasma after oral administration of Aristolochiae Fructus, J. Chromatogr. B 953e954 (2014) 73e79. open in new tab
  75. H. Wang, J. Ding, L. Ding, N. Ren, Analysis of sulfonamides in soil, sediment and sludge based on dynamic microwave-assisted micellar extraction, Envi- ron. Sci. Pollut. Res. 23 (2016) 12954e12965. open in new tab
  76. S. Montesdeoca-Esponda, Cristina Mahugo-Santana, Z. Sosa-Ferrera, J.J. Santana-Rodriguez, A dispersive liquideliquid micellar microextraction for the determination of pharmaceutical compounds in wastewaters using ultra- high-performance liquid chromatography with DAD detection, Biomed. Chromatogr. 29 (2015) 353e356. open in new tab
  77. J.P. Maran, S. Manikandan, Modeling and optimization of supercritical fluid extraction of anthocyanin and phenolic compounds from Syzygium cumini fruit pulp, J. Food Sci. Technol. 51 (2014) 1938. open in new tab
  78. C. Da Porto, A. Natolino, D. Decorti, Extraction of proanthocyanidins from grape marc by supercritical fluid extraction using CO2 as solvent and etha- nolewater mixture as co-solvent, J. Supercrit. Fluids 87 (2014) 59e64. open in new tab
  79. M. Solana, C.S. Rizza, A. Betucco, Exploiting microalgae as a source of essential fatty acids by supercritical fluid extraction of lipids: comparison between Scenedesmus obliquus, Chlorella protothecoides and Nannochloropsis salina, J. Supercrit. Fluids 92 (2014) 311e318. open in new tab
  80. X.-L. Qi, X. Peng, Y.-Y. Huang, L. Li, Z.-F. Wei, Y.-G. Zu, Y.-J. Fu, Green and efficient extraction of bioactive flavonoids from Equisetum palustre L. by deep eutectic solvents-based negative pressure cavitation method combined with macroporous resin enrichment, Ind. Crops Prod. 70 (2015) 142e148. open in new tab
  81. J.M. Matong, L. Nyaba, P.N. Nomngongo, Determination of As, Cr, Mo, Sb, Se and V in agricultural soil samples by inductively coupled plasma optical emission spectrometry after simple and rapid solvent extraction using choline chloride-oxalic acid deep eutectic solvent, Ecotoxicol. Environ. Saf. 135 (2017) 152e157. open in new tab
  82. H. Lores, V. Romero, I. Costas, C. Bendicho, I. Lavilla, Natural deep eutectic solvents in combination with ultrasonic energy as a green approach for sol- ubilisation of proteins: application to gluten determination by immunoassay, Talanta 162 (2017) 453e459. open in new tab
  83. C. Bakirtzi, K. Triantafyllidou, D.P. Makris, Novel lactic acid-based natural deep eutectic solvents: efficiency in the ultrasound-assisted extraction of antioxi- dant polyphenols from common native Greek medicinal plants, J. Appl. Res. Med. Aromat. Plants 3 (2016) 120e127. open in new tab
  84. Y. Liu, J. Garzon, J. Brent Friesen, Y. Zhang, J.B. McAlpine, D.C. Lankin, S.- N. Chen, G.F. Pauli, Countercurrent assisted quantitative recovery of metab- olites from plant-associated natural deep eutectic solvents, Fitoterapia 112 (2016) 30e37. open in new tab
  85. Javed Iqbal, Chandra Theegala, Microwave assisted lipid extraction from microalgae using biodiesel as co-solvent, Algal Res. 2 (2013) 34e42. open in new tab
  86. W. Wang, H. Yang, Y. Liu, H. Cui, J. Chen, The application of biodiesel and secoctylphenoxyacetic acid (CA-12) for the yttrium separation, Hydrometal- lurgy 109 (1e2) (2011) 47e53. open in new tab
  87. M.T. Golmakani, J.A. Mendiola, K. Rezaei, E. Ib añez, Pressurized limonene as an alternative bio-solvent for the extraction of lipids from marine microorgan- isms, J. Supercrit. Fluids 92 (2014) 1e7. open in new tab
  88. M. Tobiszewski, S. Tsakovski, V. Simeonov, J. Namie snik, F. Pena-Pereira, A solvent selection guide based on chemometrics and multicriteria decision analysis, Green Chem. 17 (2015) 4773e4785. open in new tab
  89. M. Tobiszewski, J. Namie snik, F. Pena-Pereira, Environmental risk-based ranking of solvents using the combination of a multimedia model and multi- criteria decision analysis, Green Chem. 19 (2017) 1034e1042. open in new tab
  90. M. Tobiszewski, J. Namie snik, Scoring of solvents used in analytical labora- tories by their toxicological and exposure hazards, Ecotoxicol. Environ. Saf. 120 (2015) 169e173. open in new tab
  91. M. Tobiszewski, Metrics for green analytical chemistry, Anal. Methods 8 (2016) 2993e2999. open in new tab
Verified by:
Gdańsk University of Technology

seen 121 times

Recommended for you

Meta Tags