Fabrication of Durable Ordered Ta2O5 Nanotube Arrays Decorated with Bi2S3 Quantum Dots - Publication - Bridge of Knowledge

Search

Fabrication of Durable Ordered Ta2O5 Nanotube Arrays Decorated with Bi2S3 Quantum Dots

Abstract

One of the most important challenges in the fabrication of ordered tantalum pentaoxide (Ta2O5) nanotube arrays (NTs) via the electrochemical method is the formation of nanotubes that adhere well to the Ta substrate. In this paper, we propose a new protocol that allows tight-fitting Ta2O5 nanotubes to be obtained through the anodic oxidation of tantalum foil. Moreover, to enhance their activity in the photocatalytic reaction, in this study, they have been decorated by nontoxic bismuth sulfide (Bi2S3) quantum dots (QDs) via a simple successive ionic layer adsorption and reaction (SILAR) method. Transmission electron microscopy (TEM) analysis revealed that quantum dots with a size in the range of 6-11 nm were located both inside and on the external surfaces of the Ta2O5 NTs. The effect of the anodization time and annealing conditions, as well as the effect of cycle numbers in the SILAR method, on the surface properties and photoactivity of Ta2O5 nanotubes and Bi2S3/Ta2O5 composites have been investigated. The Ta2O5 nanotubes decorated with Bi2S3 QDs exhibit high photocatalytic activity in the toluene degradation reaction, i.e., 99% of toluene (C0 = 200 ppm) was degraded after 5 min of UV-Vis irradiation. Therefore, the proposed anodic oxidation of tantalum (Ta) foil followed by SILAR decorating allows a photocatalytic surface, ready to use for pollutant degradation in the gas phase, to be obtained.

Citations

  • 9

    CrossRef

  • 0

    Web of Science

  • 1 0

    Scopus

Authors (7)

Cite as

Full text

download paper
downloaded 27 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Nanomaterials no. 9, pages 1 - 17,
ISSN: 2079-4991
Language:
English
Publication year:
2020
Bibliographic description:
Baluk M., Kobylański M., Lisowski W., Trykowski G., Klimczuk T., Mazierski M., Zaleska-Medynska A.: Fabrication of Durable Ordered Ta2O5 Nanotube Arrays Decorated with Bi2S3 Quantum Dots// Nanomaterials -Vol. 9,iss. 10 (2020), s.1-17
DOI:
Digital Object Identifier (open in new tab) 10.3390/nano9101347
Bibliography: test
  1. Colmenares, J.C.; Yi-Jun, X. Heterogeneous Photocatalysis; Springer: Berlin/Heidelberg, Germany, 2016. open in new tab
  2. Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520-7535. [CrossRef] [PubMed] open in new tab
  3. Noda, Y.; Lee, B.; Domen, K.; Kondo, J.N. Synthesis of Crystallized Mesoporous Tantalum Oxide and Its Photocatalytic Activity for Overall Water Splitting under Ultraviolet Light Irradiation. Chem. Mater. 2008, 20, 5361-5367. [CrossRef] open in new tab
  4. Li, J.; Dai, W.; Wu, G.; Guan, N.; Li, L. Fabrication of Ta 2 O 5 films on tantalum substrate for efficient photocatalysis. Catal. Commun. 2015, 65, 24-29. [CrossRef] open in new tab
  5. Gonçalves, R.V.; Migowski, P.; Wender, H.; Eberhardt, D.; Weibel, D.E.; Sonaglio, F.C.; Zapata, M.J.M.; Dupont, J.; Feil, A.F.; Teixeira, S.R. Ta 2 O 5 Nanotubes Obtained by Anodization: Effect of Thermal Treatment on the Photocatalytic Activity for Hydrogen Production. J. Phys. Chem. C 2012, 116, 14022-14030. [CrossRef] open in new tab
  6. Chaneliere, C.; Autran, J.L.; Devine, R.A.B.; Balland, B. Tantalum pentoxide (Ta 2 O 5 ) thin films for advanced dielectric applications. Mater. Sci. Eng. R Rep. 1998, 22, 269-322. [CrossRef] open in new tab
  7. Baltes, M.; Kyto, A.; Weckhuysen, B.M.; Schoonheydt, R.A.; Van Der Voort, P.; Vansant, E.F. Supported Tantalum Oxide and Supported Vanadia-tantala Mixed Oxides: Structural Characterization and Surface Properties. J. Phys. Chem. B 2001. [CrossRef] open in new tab
  8. Azim, O.A.; Abdel-Aziz, M.M.; Yahia, I.S. Structure and optical analysis of Ta 2 O 5 deposited on infrasil substrate. Appl. Surf. Sci. 2009, 255, 4829-4835. [CrossRef] open in new tab
  9. Kesmez, Ö.; Akarsu, E.; Çamurlu, H.E.; Yavuz, E.; Akarsu, M.; Arpaç, E. Preparation and characterization of multilayer anti-reflective coatings via sol-gel process. Ceram. Int. 2018, 44, 3183-3188. [CrossRef] open in new tab
  10. Ezhilvalavan, S.; Tseng, T.Y. Preparation and properties of tantalum pentoxide (Ta 2 O 5 ) thin films for ultra large scale integrated circuits (ULSIs) application-A review. J. Mater. Sci. Mater. Electron. 1999, 10, 9-31. [CrossRef] open in new tab
  11. Kato, H.; Asakura, K.; Kudo, A. Highly Efficient Water Splitting into H 2 and O 2 over Lanthanum-Doped NaTaO 3 Photocatalysts with High Crystallinity and Surface Nanostructure. J. Am. Chem. Soc. 2003, 125, 3082-3089. [CrossRef] open in new tab
  12. Duan, J.; Shi, W.; Xu, L.; Mou, G.; Xin, Q.; Guan, J. Hierarchical nanostructures of fluorinated and naked Ta 2 O 5 single crystalline nanorods: Hydrothermal preparation, formation mechanism and photocatalytic activity for H 2 production. Chem. Commun. 2012, 48, 7301. [CrossRef] [PubMed] open in new tab
  13. Liu, J.; Wei, A.; Zhao, X.; Zhang, H. Structural and electrical properties of Ta 2 O 5 thin films prepared by photo-induced CVD. Bull. Mater. Sci. 2011, 34, 443-446. [CrossRef] open in new tab
  14. Lee, K.; Schmuki, P. Highly ordered nanoporous Ta 2 O 5 formed by anodization of Ta at high temperatures in a glycerol/phosphate electrolyte. Electrochem. Commun. 2011, 13, 542-545. [CrossRef] open in new tab
  15. Su, Z.; Grigorescu, S.; Wang, L.; Lee, K.; Schmuki, P. Fast fabrication of Ta 2 O 5 nanotube arrays and their conversion to Ta 3 N 5 for efficient solar driven water splitting. Electrochem. Commun. 2015, 50, 15-19. open in new tab
  16. Nanomaterials 2019, 9, 1347 open in new tab
  17. Kobylański, M.P.; Mazierski, P.; Malankowska, A.; Kozak, M.; Diak, M.; Winiarski, M.J.; Klimczuk, T.; Lisowski, W.; Nowaczyk, G.; Zaleska-Medynska, A. TiO 2 -Co x O y composite nanotube arrays via one step electrochemical anodization for visible light-induced photocatalytic reaction. Surf. Interfaces 2018, 12, 179-189. [CrossRef] open in new tab
  18. Wei, W.; Macak, J.M.; Schmuki, P. High aspect ratio ordered nanoporous Ta 2 O 5 films by anodization of Ta. Electrochem. Commun. 2008, 10, 428-432. [CrossRef] open in new tab
  19. El-Sayed, H.A.; Birss, V.I. Controlled Interconversion of Nanoarray of Ta Dimples and High Aspect Ratio Ta Oxide Nanotubes. Nano Lett. 2009, 9, 1350-1355. [CrossRef] open in new tab
  20. Young, L. Anodic oxide films. Influence of the film present before anodization. Trans. Faraday Soc. 1957, 53, 841. [CrossRef] open in new tab
  21. Horwood, C.A.; El-Sayed, H.A.; Birss, V.I. Precise electrochemical prediction of short tantalum oxide nanotube length. Electrochim. Acta 2014, 132, 91-97. [CrossRef] open in new tab
  22. Grigorescu, S.; So, S.; Yoo, J.E.; Mazare, A.; Hahn, R.; Schmuki, P. Open top anodic Ta 3 N 5 nanotubes for higher solar water splitting efficiency. Electrochim. Acta 2015, 182, 803-808. [CrossRef] open in new tab
  23. Namur, R.S.; Reyes, K.M.; Marino, C.E.B. Growth and Electrochemical Stability of Compact Tantalum Oxides Obtained in Different Electrolytes for Biomedical Applications. Mater. Res. 2015, 18, 91-97. [CrossRef] open in new tab
  24. Mazierski, P.; Nadolna, J.; Nowaczyk, G.; Lisowski, W.; Winiarski, M.J.; Klimczuk, T.; Kobylański, M.P.; Jurga, S.; Zaleska-Medynska, A. Highly Visible-Light-Photoactive Heterojunction Based on TiO 2 Nanotubes Decorated by Pt Nanoparticles and Bi 2 S 3 Quantum Dots. J. Phys. Chem. C 2017, 121, 17215-17225. [CrossRef] open in new tab
  25. Singh, N.; Sharma, J.; Tripathi, S.K. Synthesis of Bi 2 S 3 quantum dots for sensitized solar cells by reverse SILAR. AIP Conf. Proc. 2016, 1728, 020423. open in new tab
  26. Wang, Z.J.; Li, R.; Landfester, K.; Zhang, K.A.I. Porous conjugated polymer via metal-free synthesis for visible light-promoted oxidative hydroxylation of arylboronic acids. Polymer 2017, 126, 291-295. [CrossRef] open in new tab
  27. Lv, P.; Fu, W.; Yang, H.; Sun, H.; Chen, Y.; Ma, J.; Zhou, X.; Tian, L.; Zhang, W.; Li, M.; et al. Simple synthesis method of Bi2S3/CdS quantum dots cosensitized TiO 2 nanotubes array with enhanced photoelectrochemical and photocatalytic activity. CrystEngComm 2013, 15, 7548-7555. [CrossRef] open in new tab
  28. Ramanery, F.P.; Mansur, A.A.P.; Mansur, H.S.; Carvalho, S.M.; Fonseca, M.C. Biocompatible Fluorescent Core-Shell Nanoconjugates Based on Chitosan/Bi 2 S 3 Quantum Dots. Nanoscale Res. Lett. 2016, 11. [CrossRef] [PubMed] open in new tab
  29. Syed Abuthahir, K.A.Z.; Jagannathan, R. Reverse-loop impedance profile in Bi 2 S 3 quantum dots. Mater. Chem. Phys. 2010, 121, 184-192. [CrossRef] open in new tab
  30. Narayanan, R.; Deepa, M.; Friebel, F.; Srivastava, A.K. A CdS/Bi 2 S 3 bilayer and a poly (3,4- ethylenedioxythiophene)/S 2− interface control quantum dot solar cell performance. Electrochim. Acta 2013, 105, 599-611. [CrossRef] open in new tab
  31. Bajorowicz, B.; Kobylański, M.P.; Gołabiewska, A.; Nadolna, J.; Zaleska-Medynska, A.; Malankowska, A. Quantum dot-decorated semiconductor micro-and nanoparticles: A review of their synthesis, characterization and application in photocatalysis. Adv. Colloid Interface Sci. 2018. [CrossRef] open in new tab
  32. Kadam, S.R.; Panmand, R.P.; Sonawane, R.S.; Gosavi, S.W.; Kale, B.B. A stable Bi 2 S 3 quantum dot-glass nanosystem: Size tuneable photocatalytic hydrogen production under solar light. RSC Adv. 2015, 5, 58485-58490. [CrossRef] open in new tab
  33. Bajorowicz, B.; Kowalska, E.; Nadolna, J.; Wei, Z.; Endo, M.; Ohtani, B.; Zaleska-Medynska, A. Preparation of CdS and Bi 2 S 3 quantum dots co-decorated perovskite-type KNbO 3 ternary heterostructure with improved visible light photocatalytic activity and stability for phenol degradation. Dalton Trans. 2018, 47, 15232-15245. [CrossRef] [PubMed] open in new tab
  34. Wang, Y.; Xin, F.; Chen, J.; Xiang, T.; Yin, X. Photocatalytic reduction of CO 2 in isopropanol on Bi 2 S 3 quantum dots/TiO 2 nanosheets with exposed {001} facets. J. Nanosci. Nanotechnol. 2017, 17, 1863-1869. [CrossRef] open in new tab
  35. Zumeta-Dubé, I.; Ruiz-Ruiz, V.F.; Díaz, D.; Rodil-Posadas, S.; Zeinert, A. TiO 2 sensitization with Bi2S3 quantum dots: The inconvenience of sodium ions in the deposition procedure. J. Phys. Chem. C 2014, 118, 11495-11504. [CrossRef] open in new tab
  36. Xu, L.; Sun, X.; Tu, H.; Jia, Q.; Gong, H.; Guan, J. Synchronous etching-epitaxial growth fabrication of facet-coupling NaTaO 3 /Ta 2 O 5 heterostructured nanofibers for enhanced photocatalytic hydrogen production. Appl. Catal. B Environ. 2016, 184, 309-319. [CrossRef] open in new tab
  37. Liqiang, J.; Yichun, Q.; Baiqi, W.; Shudan, L.; Baojiang, J.; Libin, Y.; Wei, F.; Honggang, F.; Jiazhong, S. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 2006, 90, 1773-1787. [CrossRef] open in new tab
  38. Naumkin, A.; Kraut-Vass, A.; Gaarenstroom, S.C.P. NIST X-Ray Photoelectron Spectroscopy Database 20 Version, 4.1; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2012. Available online: https://srdata.nist.gov/xps/ (accessed on 1 August 2019).
  39. Gonçalves, R.V.; Wojcieszak, R.; Uberman, P.M.; Teixeira, S.R.; Rossi, L.M. Insights into the active surface species formed on Ta 2 O 5 nanotubes in the catalytic oxidation of CO. Phys. Chem. Chem. Phys. 2014, 16, 5755. [CrossRef] [PubMed] open in new tab
  40. Simpson, R.; White, R.G.; Watts, J.F.; Baker, M.A. XPS investigation of monatomic and cluster argon ion sputtering of tantalum pentoxide. Appl. Surf. Sci. 2017, 405, 79-87. [CrossRef] open in new tab
  41. Yu, X.; Li, W.; Huang, J.; Li, Z.; Liu, J.; Hu, P. Superstructure Ta 2 O 5 mesocrystals derived from (NH 4 ) 2 Ta 2 O 3 F 6 mesocrystals with efficient photocatalytic activity. Dalton Trans. 2018, 47, 1948-1957. [CrossRef] [PubMed] open in new tab
  42. Sarraf, M.; Razak, B.A.; Nasiri-Tabrizi, B.; Dabbagh, A.; Kasim, N.H.A.; Basirun, W.J.; Sulaiman, E.B. Nanomechanical properties, wear resistance and in-vitro characterization of Ta 2 O 5 nanotubes coating on biomedical grade Ti-6Al-4V. J. Mech. Behav. Biomed. Mater. 2017, 66, 159-171. [CrossRef] [PubMed] open in new tab
  43. Schönberg, N.; Overend, W.G.; Munthe-Kaas, A.; Sörensen, N.A. An X-Ray Investigation of the Tantalum-Oxygen System. Acta Chem. Scand 1954, 8, 240-245. [CrossRef] open in new tab
  44. Brauer, G.; Zapp, K.H. Die Nitride des Tantals. ZAAC J. Inorg. Gen. Chem. 1954, 277, 129-139. [CrossRef] open in new tab
  45. Nischk, M.; Mazierski, P.; Gazda, M.; Zaleska, A. Ordered TiO 2 nanotubes: The effect of preparation parameters on the photocatalytic activity in air purification process. Appl. Catal. B Environ. 2014, 144, 674-685. [CrossRef] open in new tab
  46. Jiang, Y.; Liu, P.; Liu, Y.; Liu, X.; Li, F.; Ni, L.; Yan, Y.; Huo, P. Construction of amorphous Ta 2 O 5 /g-C 3 N 4 nanosheet hybrids with superior visible-light photoactivities for organic dye degradation and mechanism insight. Sep. Purif. Technol. 2016, 170, 10-21. [CrossRef] open in new tab
  47. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 95 times

Recommended for you

Meta Tags