Filter-Hilbert Method for Automatic Correction of Non-Anechoic Antenna Measurements with Embedded Self-Calibration Mechanism
Abstract
One of the most important steps in the process of antenna development involves measurements of its prototype. Far-field performance of radiators is normally characterized in strictly controlled environments such as anechoic chambers which can ensure certification-grade accuracy. Unfortunately, they are also characterized by high construction costs which might not be justified for low-budget research and/or teaching-related activities. Alternatively, the radiation characteristics can be obtained in non-anechoic test sites which neglect the expensive components such as shielding and/or absorbing materials. Although the noise from external radiation sources and multi-path interferences renders direct measurements in such conditions useless for drawing conclusions on antenna performance, the quality of responses can be substantially increased using appropriate post-processing. Unfortunately, the existing techniques are difficult to set-up and prone to failure which makes them of limited use for day-to-day measurements. In this work, a correction framework for non-anechoic measurements based on a set of Hilbert filters automatically adapted to propagation conditions within the test-site has been proposed. The presented method has been validated based on three example antennas and a total of 25 experiments covering 15 unique frequencies of interest. A benchmark of the method against the state-of-the-art correction techniques has also been performed.
Citations
-
1
CrossRef
-
0
Web of Science
-
1
Scopus
Authors (2)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
MEASUREMENT
no. 222,
ISSN: 0263-2241 - Language:
- English
- Publication year:
- 2023
- Bibliographic description:
- Bekasiewicz A., Waladi V.: Filter-Hilbert Method for Automatic Correction of Non-Anechoic Antenna Measurements with Embedded Self-Calibration Mechanism// MEASUREMENT -Vol. 222, (2023), s.113705-
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.measurement.2023.113705
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
Referenced datasets
seen 84 times