Finite Element Approaches to Model Electromechanical, Periodic Beams - Publication - Bridge of Knowledge

Search

Finite Element Approaches to Model Electromechanical, Periodic Beams

Abstract

Periodic structures have some interesting properties, of which the most evident is the presence of band gaps in their frequency spectra. Nowadays, modern technology allows to design dedicated structures of specific features. From the literature arises that it is possible to construct active periodic structures of desired dynamic properties. It can be considered that this may extend the scope of application of such structures. Therefore, numerical research on a beam element built of periodically arranged elementary cells, with active piezoelectric elements, has been performed. The control of parameters of this structure enables one for active damping of vibrations in a specific band in the beam spectrum. For this analysis the authors propose numerical models based on the finite element method (FEM) and the spectral finite element methods defined in the frequency domain (FDSFEM) and the time domain (TDSFEM).

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cite as

Full text

download paper
downloaded 37 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Applied Sciences-Basel no. 10, pages 1 - 11,
ISSN: 2076-3417
Language:
English
Publication year:
2020
Bibliographic description:
Waszkowiak W., Krawczuk M., Palacz M.: Finite Element Approaches to Model Electromechanical, Periodic Beams// Applied Sciences-Basel -Vol. 10,iss. 6 (2020), s.1-11
DOI:
Digital Object Identifier (open in new tab) 10.3390/app10061992
Bibliography: test
  1. Kushwaha, M.S.; Halevi, P.; Dobrzynski, L.; Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 1993, 71, 2022-2025. [CrossRef] [PubMed] open in new tab
  2. Sigalas, M.M.; Economou, E.N. Elastic waves inplates with periodically placed inclusions. J. Appl. Phys. 1994, 75, 2845-2850. [CrossRef] open in new tab
  3. Sigalas, M.M.; Garcia, N. Theoretical study of three dimensional elastic band gaps with the finite-difference time domain method. J. Appl. Phys. 2000, 87, 3122-3125. [CrossRef] open in new tab
  4. Liu, Y.; Gao, L.T. Explicit dynamic finite element method for band-structure calculations of 2D phononic crystals. Solid State Commun. 2007, 144, 89-93. [CrossRef] open in new tab
  5. Narisetti, R.K.; Leamy, M.J.; Ruzzene, M. A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. J. Vib. Acoust. 2010, 132, 031001. [CrossRef] open in new tab
  6. Żak, A.; Krawczuk, M.; Palacz, M. Periodic Properties of 1D FE Discrete Models in High Frequency Dynamics. Math. Probl. Eng. 2016, 2016, 9651430. [CrossRef] open in new tab
  7. Wu, Z.J.; Wang, Y.Z.; Li, F.M. Analysis on band gap properties of periodic structures of bar system using the spectral element method. Waves Random Complex Media 2013, 23, 349-372. [CrossRef] open in new tab
  8. Baz, A. Active control of periodic structures. J. Vib. Acoust. 2001, 123, 472-479. [CrossRef] open in new tab
  9. Hagood, N.W.; von Flotow, A. Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 1991, 146, 243-268. [CrossRef] open in new tab
  10. Airoldi, L.; Senesi, M.; Ruzzene, M. Piezoelectric Superlattices and Shunted Periodic Arrays as Tunable Periodic Structures and Metamaterials. In Wave Propagation in Linear and Nonlinear Periodic Media; Springer: Berlin/Heidelberg, Germany, 2012; pp. 33-108. open in new tab
  11. Zienkiewicz, O.C.; Taylor, R.L.; Nithiarasu, P.; Zhu, J. The Finite Element Method; McGraw-Hill: London, UK, 1977; Volume 3. open in new tab
  12. Ostachowicz, W.; Kudela, P.; Krawczuk, M.; Zak, A. Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method; open in new tab
  13. Doyle, J.F. Wave propagation in structures. In Wave Propagation in Structures; Springer: Berlin/Heidelberg, Germany, 1989; pp. 126-156. open in new tab
  14. Żak, A.; Krawczuk, M.; Palacz, M.; Doliński, Ł.; Waszkowiak, W. High frequency dynamics of an isotropic Timoshenko periodic beam by the use of the Time-domain Spectral Finite Element Method. J. Sound Vib. 2017, 409, 318-335. [CrossRef] open in new tab
  15. Żak, A.; Krawczuk, M.; Waszkowiak, W. Longitudinal, Torsional and Flexural Dynamics of 1-D Periodic Structures. In Proceedings of the 22nd International Congress on Sound and Vibration: Major Challenges in Acoustics, Noise and Vibration Research (22nd ICSV), Florence, Italy, 12-16 July 2015. open in new tab
  16. Brillouin, L. Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices; Courier Corporation: North Chelmsford, MA, USA, 2003.
  17. Brillouin, L. Les électrons dans les métaux et le classement des ondes de de Broglie correspondantes. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences 1930, 191, 292.
  18. Farzbod, F.; Leamy, M.J. Analysis of Bloch's method in structures with energy dissipation. J. Vib. Acoust. Trans. ASME 2011, 133, 051010. [CrossRef] c 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 120 times

Recommended for you

Meta Tags