Flexoelectricity and apparent piezoelectricity of a pantographic micro-bar - Publication - Bridge of Knowledge

Search

Flexoelectricity and apparent piezoelectricity of a pantographic micro-bar

Abstract

We discuss a homogenized model of a pantographic bar considering flexoelectricity. A pantographic bar consists of relatively stiff small bars connected by small soft flexoelectric pivots. As a result, an elongation of the bar relates almost to the torsion of pivots. Taking into account their flexoelectric properties we find the corresponding electric polarization. As a results, the homogenized pantographic bar demonstrates piezoelectric properties inherited from the flexoelectric properties of pivots. The effective stiffness properties of the homogenized bars are determined by the geometry of the structural elements and shear stiffness whereas the piezoelectric properties follow from the flexoelectric moduli of the pivots.

Citations

  • 5 7

    CrossRef

  • 0

    Web of Science

  • 5 9

    Scopus

Authors (4)

Cite as

Full text

download paper
downloaded 41 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE no. 149, pages 1 - 9,
ISSN: 0020-7225
Language:
English
Publication year:
2020
Bibliographic description:
Eremeev V., Ganghoffer J., Konopińska-Zmysłowska V., Uglov N.: Flexoelectricity and apparent piezoelectricity of a pantographic micro-bar// INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE -Vol. 149, (2020), s.1-9
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.ijengsci.2020.103213
Bibliography: test
  1. Abdoul-Anziz, H. , & Seppecher, P. (2018). Strain gradient and generalized continua obtained by homogenizing frame lattices. Mathematics and Mechanics of Complex Systems, 6 (3), 213-250 . open in new tab
  2. Auffray, N. , He, Q. C. , & Quang, H. L. (2019). Complete symmetry classification and compact matrix representations for 3D strain gradient elasticity. Interna- tional Journal of Solids and Structures, 159 , 197-210 . open in new tab
  3. Cordero, N. M. , Forest, S. , & Busso, E. P. (2016). Second strain gradient elasticity of nano-objects. Journal of Mechanics and Physics of Solids, 97 , 92-124 . open in new tab
  4. Coutris, N. , Thompson, L. L. , & Kosaraju, S. (2020). Asymptotic homogenization models for pantographic lattices with variable order rotational resistance at pivots. Journal of the Mechanics and Physics of Solids, 134 , 103718 . dell'Isola, F. , Seppecher, P. , Spagnuolo, M. , Barchiesi, E. , Hild, F. , Lekszycki, T. , et al. (2019a). Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Continuum Mechanics and Thermodynamics, 31 (4), 1231-1282 . open in new tab
  5. dell'Isola, F. , Turco, E. , Misra, A. , Vangelatos, Z. , Grigoropoulos, C. , & Melissinaki, V. (2019b). Force-displacement relationship in micro-metric pantographs: Experiments and numerical simulations. Comptes Rendus Mécanique, 347 (5), 397-405 . open in new tab
  6. Deng, Q. , Kammoun, M. , Erturk, A. , & Sharma, P. (2014). Nanoscale flexoelectric energy harvesting. International Journal of Solids and Structures, 51 (18), 3218-3225 . open in new tab
  7. Eringen, A. C. , & Maugin, G. A. (1990). Electrodynamics of continua . New York: Springer . open in new tab
  8. Landau, L. D. , & Lifshitz, E. M. (1970). Theory and elasticity. Course of theoretical physics : 7 (2nd Ed). Oxford: Pergamon Press . open in new tab
  9. Le Quang, H. , & He, Q. C. (2011). The number and types of all possible rotational symmetries for flexoelectric tensors. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467 (2132), 2369-2386 .
  10. Lee, D. , & Noh, T. W. (2012). Giant flexoelectric effect through interfacial strain relaxation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370 (1977), 4 944-4 957 . open in new tab
  11. Liu, C. , Wu, H. , & Wang, J. (2016). Giant piezoelectric response in piezoelectric/dielectric superlattices due to flexoelectric effect. Applied Physics Letters, 109 (19), 192901 . open in new tab
  12. Majdoub, M. S. , Sharma, P. , & Cagin, T. (2008). Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Physical Review B, 77 (12), 125424 . open in new tab
  13. Maugin, G. A. (2017). Non-classical continuum mechanics: A dictionary . Singapore: Springer . open in new tab
  14. Mindlin, R. D. (1964). Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 16 (1), 51-78 . open in new tab
  15. Mindlin, R. D. (1968). Polarization gradient in elastic dielectrics. International Journal of Solids and Structures, 4 (6), 637-642 . open in new tab
  16. Mindlin, R. D. , & Eshel, N. N. (1968). On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures, 4 (1), 109-124 . Neuber, H. (1946). Theory of notch stresses: Principles for exact stress calculation . Ann Arbor, Michigan: JW Edwards . open in new tab
  17. Nguyen, T. D. , Mao, S. , Yeh, Y.-W. , Purohit, P. K. , & McAlpine, M. C. (2013). Nanoscale flexoelectricity. Advanced Materials, 25 (7), 946-974 . Olive, M. , & Auffray, N. (2014). Symmetry classes for odd-order tensors. ZAMM, 94 (5), 421-447 . open in new tab
  18. Rahali, Y. , Giorgio, I. , Ganghoffer, J. , & dell'Isola, F. (2015). Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. International Journal of Engineering Science, 97 , 148-172 . open in new tab
  19. Scerrato, D. , Zhurba Eremeeva, I. A. , Lekszycki, T. , & Rizzi, N. L. (2016). On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. ZAMM, 96 (11), 1268-1279 . open in new tab
  20. Sharma, N. D. , Maranganti, R. , & Sharma, P. (2007). On the possibility of piezoelectric nanocomposites without using piezoelectric materials. Journal of the Mechanics and Physics of Solids, 55 (11), 2328-2350 . open in new tab
  21. Spagnuolo, M. , Peyre, P. , & Dupuy, C. (2019). Phenomenological aspects of quasi-perfect pivots in metallic pantographic structures. Mechanics Research Communications, 101 , 103415 . Timoshenko, S. , & Goodier, J. N. (1951). Theory of elasticity (2nd Ed). New York: McGraw-Hill . open in new tab
  22. Toupin, R. A. (1962). Elastic materials with couple-stresses. Arch Ration Mech Analysis, 11 (1), 385-414 . open in new tab
  23. Wang, B. , Gu, Y. , Zhang, S. , & Chen, L.-Q. (2019). Flexoelectricity in solids: Progress, challenges, and perspectives. Progress in Materials Science, 106 , 100570 . Yudin, P. V. , & Tagantsev, A. K. (2013). Fundamentals of flexoelectricity in solids. Nanotechnology, 24 (43), 432001 .
  24. Yurkov, A. S. , & Tagantsev, A. K. (2016). Strong surface effect on direct bulk flexoelectric response in solids. Applied Physics Letters, 108 (2), 022904 . Zhang, S. , Xu, M. , Liu, K. , & Shen, S. (2015). A flexoelectricity effect-based sensor for direct torque measurement. Journal of Physics D: Applied Physics, 48 (48), 485502 . open in new tab
  25. Zubko, P. , Catalan, G. , & Tagantsev, A. K. (2013). Flexoelectric effect in solids. Annual Review of Materials Research, 43 (1), 387-421 . open in new tab
Verified by:
Gdańsk University of Technology

seen 119 times

Recommended for you

Meta Tags