Graph Neural Networks and Structural Information on Ionic Liquids: A Cheminformatics Study on Molecular Physicochemical Property Prediction
Abstract
Ionic liquids (ILs) provide a promising solution in many industrial applications, such as solvents, absorbents, electrolytes, catalysts, lubricants, and many others. However, due to the enormous variety of their structures, uncovering or designing those with optimal attributes requires expensive and exhaustive simulations and experiments. For these reasons, searching for an efficient theoretical tool for finding the relationship between the IL structure and properties has been the subject of many research studies. Recently, special attention has been paid to machine learning tools, especially multilayer perceptron and convolutional neural networks, among many other algorithms in the field of artificial neural networks. For the latter, graph neural networks (GNNs) seem to be a powerful cheminformatic tool yet not well enough studied for dual molecular systems such as ILs. In this work, the usage of GNNs in structure–property studies is critically evaluated for predicting the density, viscosity, and surface tension of ILs. The problem of data availability and integrity is discussed to show how well GNNs deal with mislabeled chemical data. Providing more training data is proven to be more important than ensuring that they are immaculate. Great attention is paid to how GNNs process different ions to give graph transformations and electrostatic information. Clues on how GNNs should be applied to predict the properties of ILs are provided. Differences, especially regarding handling mislabeled data, favoring the use of GNNs over classical quantitative structure–property models are discussed.
Citations
-
6
CrossRef
-
0
Web of Science
-
6
Scopus
Authors (2)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1021/acs.jpcb.3c05521
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
JOURNAL OF PHYSICAL CHEMISTRY B
no. 127,
pages 10542 - 10555,
ISSN: 1520-6106 - Language:
- English
- Publication year:
- 2023
- Bibliographic description:
- Baran K., Kloskowski A.: Graph Neural Networks and Structural Information on Ionic Liquids: A Cheminformatics Study on Molecular Physicochemical Property Prediction// JOURNAL OF PHYSICAL CHEMISTRY B -Vol. 127,iss. 49 (2023), s.10542-10555
- DOI:
- Digital Object Identifier (open in new tab) 10.1021/acs.jpcb.3c05521
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 115 times
Recommended for you
Intermolecular Interactions as a Measure of Dapsone Solubility in Neat Solvents and Binary Solvent Mixtures
- P. Cysewski,
- M. Przybyłek,
- T. Jeliński
Searching for Solvents with an Increased Carbon Dioxide Solubility Using Multivariate Statistics
- M. Bystrzanowska,
- M. Tobiszewski,
- F. Pena-Pereira
- + 1 authors