Heteroclinic solutions of Allen-Cahn type equations with a general elliptic operator - Publication - MOST Wiedzy

Search

Heteroclinic solutions of Allen-Cahn type equations with a general elliptic operator

Abstract

We consider a generalization of the Allen-Cahn type equation in divergence form $-\rm{div}(\nabla G(\nabla u(x,y)))+F_u(x,y,u(x,y))=0$. This is more general than the usual Laplace operator. We prove the existence and regularity of heteroclinic solutions under standard ellipticity and $m$-growth conditions.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Full text

download paper
downloaded 4 times

License

Copyright (2018 Juliusz Schauder Center for Nonlinear Studies)

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Topological Methods in Nonlinear Analysis no. 52, pages 729 - 738,
ISSN: 1230-3429
Language:
English
Publication year:
2018
Bibliographic description:
Wroński K.: Heteroclinic solutions of Allen-Cahn type equations with a general elliptic operator// Topological Methods in Nonlinear Analysis. -Vol. 52, nr. 2 (2018), s.729-738
DOI:
Digital Object Identifier (open in new tab) 10.12775/tmna.2018.010
Bibliography: test
  1. P.H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, Communications on Pure and Applied Mathematics 56 (2003), 1078-1134. open in new tab
  2. J. Moser, Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), 229-272. open in new tab
  3. M. Giaquinta and E. Giusti, On the regularity of the minima of variatonal inte- grals, Acta Math 148 (1982), 31-46. open in new tab
  4. F. Alessio, L. Jeanjean and P. Montecchiari, Stationary layered solutions in R 2 for a class of non autonomous Allen-Cahn equations, Calculus of Variations and Partial Differential Equations 11 (2000), 177-202. open in new tab
  5. F. Alessio, L. Jeanjean and P. Montecchiari, Existence of infinitely many stationary layered solutions in R 2 for a class of periodic Allen-Cahn equations, Com- munications in Partial Differential Equations 27 (2002), 1537-1574. open in new tab
  6. R. de la Llave and E. Valdinoci, Multiplicity results for interfaces of Ginzburg- Landau-Allen-Cahn equations in periodic media, Advances in Mathematics 215 (2007), 379-426. open in new tab
  7. V. Bangert, On minimal laminations of the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 95-138. open in new tab
  8. E. Valdinoci, Plane-Like Minimizers In Periodic Media: Jet Flows And Ginzburg- Landau-Type Functionals, J. Reine Angew. Math. 574 (2001), 147-185. open in new tab
  9. U. Bessi, Slope-changing solutions of elliptic problems on R n , Nonlinear Anal. 68 (2008), 3923-3947. open in new tab
  10. O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, 1968. open in new tab
  11. P. Pucci and J. B. Serrin, The Maximum Principle, Birkhäuser Basel, 2007. open in new tab
  12. B. Dacorogna, Direct Methods in the Calculus of Variations, Springer New York, 2007. Department of Technical Physics and Applied Mathematics, Gdańsk Uni- versity of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland, e-mail: karwrons@pg.gda.pl
Verified by:
Gdańsk University of Technology

seen 37 times

Recommended for you

Meta Tags