Hydraulic resistance analyses of selected elements of the prototype Stirling engine - Publication - MOST Wiedzy

Search

Hydraulic resistance analyses of selected elements of the prototype Stirling engine

Abstract

The paper presents the results of simulation tests of hydraulic resistance and temperature distribution of the prototype Stirling alpha engine supplied with waste heat. The following elements were analyzed: heater, regenerator and cooler. The engine uses compressed air as a working gas. Analyses were carried out for three working pressure values and different engine speeds. The work was carried out in order to optimize the configuration of the engine due to the minimization of hydraulic resistance, while maintaining the required thermal capacity of the device. Preliminary tests carried out on the real object allowed to determine boundary and initial conditions for simulation purposes. The simulation assumes that there is no heat exchange between the regenerator and the environment. The solid model used in simulation tests includes the following elements: supply channel, heater, regenerator, cooler, discharge channel. Due to the symmetrical structure of the analyzed elements, simulation tests were carried out using 1/6 of the volume of the system.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Archives of Thermodynamics no. 40, pages 123 - 136,
ISSN: 1231-0956
Language:
English
Publication year:
2019
Bibliographic description:
Furmanek M., Kropiwnicki J.: Hydraulic resistance analyses of selected elements of the prototype Stirling engine// Archives of Thermodynamics -Vol. 40,iss. 3 (2019), s.123-136
DOI:
Digital Object Identifier (open in new tab) 10.24425/ather.2019.129997
Bibliography: test
  1. Walker G.: Stirling Engines. Oxford University Press, 1980. open in new tab
  2. Żmudzki S.: Stirling Engines. WNT, Warszawa 1993 (in Polish). open in new tab
  3. Finkelstein Th., Organ A.J.: Air Engines. ASME, New York 2001.
  4. Buoro D., et al.: Optimal synthesis and operation of advanced energy supply systems for standard and domotic home. Energ. Convers. Manage. 60(2012), 96- 105. open in new tab
  5. Bernd Th.: Benchmark testing of Micro-CHP units. Appl. Therm. Eng. 28(2008), 2049-2054.
  6. Gianluca V., et al.: Experimental and numerical study of a micro-cogeneration Stirling engine for residential applications. Energy Procedia 45(2014), 1235-1244.
  7. Li T., et al.: Development and test of a Stirling engine driven by waste gases for the micro-CHP system. Appl. Therm. Eng. 33-34(2012), 119-123. open in new tab
  8. Remiorz L, et al.: Comparative assessment of the effectiveness of a free-piston Stirling engine-based micro-cogeneration unit and a heat pump. Energy 148(2018), 134-147. open in new tab
  9. Marion M., Hasna L., Gualous H.: Performances of a CHP Stirling system fuelled with glycerol. Renew. Energ. 86(2016), 182-191. open in new tab
  10. Meybodi M., Behnia M.: Australian coal mine methane emissions mitigation po- tential using a Stirling engine-based CHP system. Energy Policy 62(2013), 10-18. open in new tab
  11. Lane N.W., Beale W.T.: A Biomass-fired 1 kWe Stirling engine generator and its applications in South Africa. In: Proc. 9th Int. Stirling Engine Conf., South Africa, June 2-4, 1999.
  12. Cheng C.H., et al.: Theoretical and experimental study of a 300-W beta-type Stirling engine. Energy 59(2013), 590-599. open in new tab
  13. Karabulut H., et al.: An experimental study on the development of a b-type Stir- ling engine for low and moderate temperature heat sources. Appl. Energ. 86(2009), 68-73. open in new tab
  14. Kongtragool B., Wongwises S.: Performance of low-temperature differential Stirling engines. Renew. Energ. 32(2007), 547-566. open in new tab
  15. Sripakagorn A., Srikam C.: Design and performance of a moderate temperature difference Stirling engine. Renew. Energ. 36(2011), 1728-1733. open in new tab
  16. Kropiwnicki J.: Design and applications of modern Stirling engines. Combust. Engines 3(2013), 243-249. open in new tab
  17. Maier Ch., et al.: Stirling Engine. University of Gävle, Gävle 2007.
  18. Cieśliński J., Kropiwnicki J., Kneba Z.: Application of Stirling engines in micro-co-generation. In: District Heating, Heating, Renewable Energy Ssources (W. Zima, D. Taler), Wydaw. Politechniki Krakowskiej, Kraków 2013, 47-60 (in Polish).
  19. Cieśliński J., Kropiwnicki J., Kneba Z., Woronkin S., Witanowski Ł., Za- lewski K.: Investigation of a Stirling engine as a micro-CHP system. In: Proc. 3rd
  20. Int. Conf. Low Temperature and Waste Heat Use in Energy Supply Systems Theory and Practice, Bremen 2012, 33-38.
  21. Gheith R., Aloui F., Ben Nasrallah S.: Experimental investigation of a Gamma Stirling engine. Int. J. Energy Res. 37(2013), 1519-1528. open in new tab
  22. Tavakolpour-Saleh A.R., et al.: A novel active free piston Stirling engine: Modeling, development, and experiment. Appl. Energ. 19(2017), 9, 400-415. open in new tab
  23. Kwankaomeng S., et al.: Investigation on stability and performance of a free- piston Stirling engine. Energy Procedia 52(2014), 598-609. open in new tab
  24. Kropiwnicki J., Furmanek M.: The use of Stirling engine for energy recovery from flue gas. Autobusy, Technika, Eksploatacja, Systemy Transportowe 9(2018), 89-92 (in Polish). open in new tab
  25. Kropiwnicki J.: Stirling engines powered by renewable energy sources. In: Proc. 22nd Int. Symp. Research-Education-Technology, Bremen 2015, 231-237. open in new tab
  26. Pudlik W.: Heat Transfer and Heat Exchangers. Wydawn. Politechniki Gdańskiej, Gdańsk 2012 (in Polish).
  27. Madejski J.: Theory of Heat Transfer. Wydawn. Politechniki Szczecińskiej, Szczecin 1998 (in Polish). open in new tab
  28. Tanaka M., Yamashita C.F.: Flow and the heat transfer characteristics of Stirling engine in an oscillating flow. JSME Int. J. 33(1990), 2, 283-289. open in new tab
  29. Uchman W., Remiorz L., Kotowicz J.: Economic effectiveness evaluation of the free piston Stirling engine-based micro-combined heat and power unit in relation to classical systems. Arch. Thermodyn. 40(2019), 1, 71-83.
  30. Ranjan R.K., Verma S.K.: Thermodynamic analysis and analytical simulation of the Rallis modified Stirling cycle. Arch. Thermodyn. 40(2019), 2, 35-67.
  31. Autodesk Inventor Tutorial, https://www.instructables.com/id/Autodesk-Inventor- Tutorial/ (accessed: June 30th 2019).
  32. Ansys Fluent Users Guide, https://www.ansys.com/products/fluids/ansys-fluent (accessed: June 30th 2019). open in new tab
Verified by:
Gdańsk University of Technology

seen 47 times

Recommended for you

Meta Tags