Hydrophobic deep eutectic solvents in microextraction techniques–A review - Publication - MOST Wiedzy

Search

Hydrophobic deep eutectic solvents in microextraction techniques–A review

Abstract

Over the past decade, deep eutectic solvents (DES) have been widely studied and applied in sample preparation techniques. Until recently, most of the synthesized DES were hydrophilic, which prevented their use in the extraction of aqueous samples. However, after 2015 studies on the synthesis and application of hydrophobic deep eutectic solvents (HDES) has rapidly expanded. Due to unique properties of HDES i.e. density, viscosity, acidity or basicity, polarity and volatility, good extractabilities for various target analytes, which could be altered by careful selection of the hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) components, HDES are promising alternatives to the traditional organic solvents employed in sample preparation. Moreover, the possibility HDES synthesis of non-toxic ingredients, makes HDES meet all the standards of green analytical chemistry. Practical applications of HDES in sample preparation include conventional liquid-liquid extraction, and several types of liquid-phase microextraction, as well as solid phase extraction. The present review covers a comprehensive summarizing of available literature data on the most important physicochemical properties of HDES playing a key role in aqueous sample preparation methods, their limitations as well as challenges in this area, and a perspective of their future are described.

Citations

  • 1 1

    CrossRef

  • 7

    Web of Science

  • 1 0

    Scopus

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
MICROCHEMICAL JOURNAL no. 152, pages 1 - 16,
ISSN: 0026-265X
Language:
English
Publication year:
2020
Bibliographic description:
Makoś P., Słupek E., Gębicki J.: Hydrophobic deep eutectic solvents in microextraction techniques–A review// MICROCHEMICAL JOURNAL -Vol. 152, (2020), s.1-16
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.microc.2019.104384
Bibliography: test
  1. A. Spietelun, Ł. Marcinkowski, M. de la Guardia, J. Namieśnik, Green aspects, developments and perspectives of liquid phase microextraction techniques, Talanta 119 (2014) 34-45, https://doi.org/10.1016/J.TALANTA.2013.10.050. open in new tab
  2. M. Sajid, Magnetic ionic liquids in analytical sample preparation: a literature re- view, TrAC Trends Anal. Chem. 113 (2019) 210-223, https://doi.org/10.1016/J. TRAC.2019.02.007. open in new tab
  3. S. Armenta, S. Garrigues, M. de la Guardia, The role of green extraction techniques in Green Analytical Chemistry, TrAC -Trends Anal. Chem. 71 (2015) 2-8, https:// doi.org/10.1016/j.trac.2014.12.011. open in new tab
  4. F. Chemat, M.A. Vian, G. Cravotto, Green extraction of natural products: concept and principles, Int. J. Mol. Sci. 13 (2012) 8615-8627, https://doi.org/10.3390/ ijms13078615. open in new tab
  5. N. Lorenzo-Parodi, W. Kaziur, N. Stojanović, M.A. Jochmann, T.C. Schmidt, Solventless microextraction techniques for water analysis, TrAC -Trends Anal. Chem. (2019), https://doi.org/10.1016/j.trac.2018.11.013. open in new tab
  6. P. Makoś, A. Przyjazny, G. Boczkaj, Methods of assaying volatile oxygenated or- ganic compounds in effluent samples by gas chromatography-A review, J. Chromatogr. A. 1592 (2019) 143-160, https://doi.org/10.1016/J.CHROMA. 2019.01.045. open in new tab
  7. J. An, M.J. Trujillo-Rodríguez, V. Pino, J.L. Anderson, Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems, J. Chromatogr. A. 1500 (2017) 1-23, https://doi.org/10.1016/J.CHROMA.2017.04.012. open in new tab
  8. I. Pacheco-Fernández, V. Pino, Green solvents in analytical chemistry, Curr. Opin. Green Sustain. Chem. 18 (2019) 42-50, https://doi.org/10.1016/J.COGSC.2018. 12.010. open in new tab
  9. C.F. Poole, S.K. Poole, Extraction of organic compounds with room temperature ionic liquids, J. Chromatogr. A. 1217 (2010) 2268-2286, https://doi.org/10. 1016/J.CHROMA.2009.09.011. open in new tab
  10. J. Liu, G. Jiang, J. Liu, J.Å. Jönsson, Application of ionic liquids in analytical chemistry, TrAC Trends Anal. Chem. 24 (2005) 20-27, https://doi.org/10.1016/J. TRAC.2004.09.005. open in new tab
  11. Y. Wang, Y. Sun, B. Xu, X. Li, R. Jin, H. Zhang, D. Song, Magnetic ionic liquid- based dispersive liquid-liquid microextraction for the determination of triazine herbicides in vegetable oils by liquid chromatography, J. Chromatogr. A. 1373 (2014) 9-16, https://doi.org/10.1016/J.CHROMA.2014.11.009. open in new tab
  12. H. Yu, J. Merib, J.L. Anderson, Faster dispersive liquid-liquid microextraction methods using magnetic ionic liquids as solvents, J. Chromatogr. A. 1463 (2016) 11-19, https://doi.org/10.1016/J.CHROMA.2016.08.007. open in new tab
  13. M.J. Trujillo-Rodríguez, O. Nacham, K.D. Clark, V. Pino, J.L. Anderson, J.H. Ayala, A.M. Afonso, Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons, Anal. Chim. Acta. 934 (2016) 106-113, https://doi.org/10.1016/J.ACA.2016.06.014. open in new tab
  14. T. Wasilewski, J. Gębicki, W. Kamysz, Prospects of ionic liquids application in electronic and bioelectronic nose instruments, TrAC -Trends Anal. Chem. 93 (2017) 23-36, https://doi.org/10.1016/j.trac.2017.05.010. open in new tab
  15. A. Romero, A. Santos, J. Tojo, A. Rodríguez, Toxicity and biodegradability of imidazolium ionic liquids, J. Hazard. Mater. 151 (2008) 268-273, https://doi.org/ 10.1016/J.JHAZMAT.2007.10.079. open in new tab
  16. Q. Zhang, K. De Oliveira Vigier, S. Royer, F. Jérôme, Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev. 41 (2012) 7108-7146, https://doi.org/10.1039/c2cs35178a. open in new tab
  17. B. Tang, H. Zhang, K.H. Row, Application of deep eutectic solvents in the ex- traction and separation of target compounds from various samples, J. Sep. Sci. 38 (2015) 1053-1064, https://doi.org/10.1002/jssc.201401347. open in new tab
  18. E.L. Smith, A.P. Abbott, K.S. Ryder, Deep eutectic solvents (DESs) and their ap- plications, Chem. Rev. 114 (2014) 11060-11082, https://doi.org/10.1021/ cr300162p. open in new tab
  19. V. Abbott, Capper A.P., Davies G., Rasheed D.L., R.K. Tambyrajah, Novel solvent properties of choline chloride /Urea mixtures, Chem. Commun. 0 (2003) 70-71 https://doi.org/10.1021/ja048266j. open in new tab
  20. C. Florindo, L.C. Branco, I.M. Marrucho, Development of hydrophobic deep eu- tectic solvents for extraction of pesticides from aqueous environments, Fluid Phase Equilib. 448 (2017) 135-142, https://doi.org/10.1016/J.FLUID.2017.04.002. open in new tab
  21. M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, R.K. Ibrahim, M.A. Hashim, Lead removal from water by choline chloride based deep eutectic solvents functiona- lized carbon nanotubes, J. Mol. Liq. 222 (2016) 883-894, https://doi.org/10. 1016/J.MOLLIQ.2016.07.074. open in new tab
  22. M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, M.A. Hashim, Functionalization of CNTs surface with phosphonuim based deep eutectic solvents for arsenic re- moval from water, Appl. Surf. Sci. 389 (2016) 216-226, https://doi.org/10.1016/ J.APSUSC.2016.07.079. open in new tab
  23. M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, M. Ibrahim, M.A. Hashim, Allyl triphenyl phosphonium bromide based DES-functionalized carbon nanotubes for the removal of mercury from water, Chemosphere 167 (2017) 44-52, https://doi. org/10.1016/J.CHEMOSPHERE.2016.09.133. open in new tab
  24. L.F. Zubeir, D.J.G.P. Van Osch, M.A.A. Rocha, F. Banat, M.C. Kroon, Carbon di- oxide solubilities in decanoic acid-based hydrophobic deep eutectic solvents, J. Chem. Eng. Data. 63 (2018) 913-919, https://doi.org/10.1021/acs.jced.7b00534. open in new tab
  25. C.L. Boldrini, N. Manfredi, F.M. Perna, V. Capriati, A. Abbotto, Designing eco- sustainable dye-sensitized solar cells by the use of a menthol-based hydrophobic eutectic solvent as an effective electrolyte medium, Chem. -A Eur. J. 24 (2018) 17656-17659, https://doi.org/10.1002/chem.201803668. open in new tab
  26. J. Cao, M. Yang, F. Cao, J. Wang, E. Su, Tailor-made hydrophobic deep eutectic solvents for cleaner extraction of polyprenyl acetates from Ginkgo biloba leaves, J. Clean. Prod. 152 (2017) 399-405, https://doi.org/10.1016/J.JCLEPRO.2017.03. 140. open in new tab
  27. J. Cao, M. Yang, F. Cao, J. Wang, E. Su, Well-Designed hydrophobic deep eutectic solvents as green and efficient media for the extraction of Artemisinin from Artemisia Annua leaves, ACS Sustain. Chem. Eng. 5 (2017) 3270-3278, https:// doi.org/10.1021/acssuschemeng.6b03092. open in new tab
  28. O.S. Hammond, D.T. Bowron, K.J. Edler, The effect of water upon deep eutectic solvent nanostructure: an unusual transition from ionic mixture to aqueous solu- tion, Angew. Chemie -Int. 56 (2017) 9782-9785, https://doi.org/10.1002/anie. 201702486 Ed. open in new tab
  29. X. Li, K.H. Row, Development of deep eutectic solvents applied in extraction and separation, J. Sep. Sci. 39 (2016) 3505-3520, https://doi.org/10.1002/jssc. 201600633. open in new tab
  30. C. Florindo, F.S. Oliveira, L.P.N. Rebelo, A.M. Fernandes, I.M. Marrucho, Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids, ACS Sustain. Chem. Eng. 2 (2014) 2416-2425, https://doi.org/10.1021/sc500439w. open in new tab
  31. D.J.G.P. Van Osch, L.F. Zubeir, A. Van Den Bruinhorst, M.A.A. Rocha, M.C. Kroon, Hydrophobic deep eutectic solvents as water-immiscible extractants, Green Chem 17 (2015) 4518-4521, https://doi.org/10.1039/c5gc01451d. open in new tab
  32. W. Tang, Y. Dai, K.H. Row, Evaluation of fatty acid / alcohol-based hydrophobic deep eutectic solvents as media for extracting antibiotics from environmental water, Anal. Bioanal. Chem. 410 (2018) 7325-7336, https://doi.org/10.1002/ cssc.201701282. open in new tab
  33. S.Y. Dandan Ge, Yi Zhang, Yixiu Dai, Air-assisted dispersive liquid-liquid micro- extraction based on a new hydrophobic deep eutectic solvent for the pre- concentration of benzophenone-type UV filters from aqueous samples, J. Sep. Sci. 41 (2018) 1635-1643, https://doi.org/10.1002/jssc.201701282. open in new tab
  34. J. Cao, L. Chen, M. Li, F. Cao, L. Zhao, E. Su, Two-phase systems developed with hydrophilic and hydrophobic deep eutectic solvents for simultaneously extracting various bioactive compounds with different polarities, Green Chem. (2018) 1879-1886, https://doi.org/10.1039/c7gc03820h. open in new tab
  35. B.D. Ribeiro, C. Florindo, L.C. Iff, M.A.Z. Coelho, I.M. Marrucho, Menthol-based eutectic mixtures: hydrophobic low viscosity solvents, ACS Sustain. Chem. Eng. 3 (2015) 2469-2477, https://doi.org/10.1021/acssuschemeng.5b00532. open in new tab
  36. C. Florindo, L.C. Branco, I.M. Marrucho, Development of hydrophobic deep eu- tectic solvents for extraction of pesticides from aqueous environments, Fluid Phase Equilib. 448 (2017) 135-142, https://doi.org/10.1016/j.fluid.2017.04.002. open in new tab
  37. D.J.G.P. Van Osch, C.H.J.T. Dietz, J. Van Spronsen, M.C. Kroon, F. Gallucci, M. Van Sint Annaland, R. Tuinier, A search for natural hydrophobic deep eutectic solvents based on natural components, ACS Sustain. Chem. Eng. 7 (2019) 2933-2942, https://doi.org/10.1021/acssuschemeng.8b03520. open in new tab
  38. M.A.R. Martins, E.A. Crespo, P.V.A. Pontes, L.P. Silva, M. Bülow, G.J. Maximo, E.A.C. Batista, C. Held, S.P. Pinho, J.A.P. Coutinho, Tunable hydrophobic eutectic solvents based on terpenes and monocarboxylic acids, ACS Sustain. Chem. Eng. 6 (2018) 8836-8846, https://doi.org/10.1021/acssuschemeng.8b01203. open in new tab
  39. M. Nedaei, A.R. Zarei, S.A. Ghorbanian, Development of a new emulsification microextraction method based on solidification of settled organic drop: applica- tion of a novel ultra-hydrophobic tailor-made deep eutectic solvent, New J. Chem. 42 (2018) 12520-12529, https://doi.org/10.1039/c8nj02219d. open in new tab
  40. N. Schaeffer, M.A.R. Martins, C.M.S.S. Neves, S.P. Pinho, J.A.P. Coutinho, Sustainable hydrophobic terpene-based eutectic solvents for the extraction and separation of metals, Chem. Commun. 54 (2018) 8104-8107, https://doi.org/10. 1039/c8cc04152k. open in new tab
  41. C. Florindo, L. Romero, I. Rintoul, L.C. Branco, I.M. Marrucho, From phase change materials to green solvents: hydrophobic low viscous fatty acid-based deep eu- tectic solvents, ACS Sustain. Chem. Eng. 6 (2018) 3888-3895, https://doi.org/10. 1021/acssuschemeng.7b04235. open in new tab
  42. D.J.G.P. Van Osch, D. Parmentier, C.H.J.T. Dietz, A. Van Den Bruinhorst, R. Tuinier, M.C. Kroon, Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents, Chem. Commun. 52 (2016) 11987-11990, https://doi.org/10.1039/c6cc06105b. open in new tab
  43. Y. Kaplun-Frischoff, E. Touitou, Testosterone skin permeation enhancement by menthol through formation of eutectic with drug and interaction with skin lipids, J. Pharm. Sci. 86 (1997) 1394-1399, https://doi.org/10.1021/js9701465. open in new tab
  44. C.S. Yong, S.H. Jung, J.D. Rhee, H.G. Choi, B.J. Lee, D.C. Kim, Y.W. Choi, C.K. Kim, Improved solubility and in vitro dissolution of ibuprofen from polox- amer gel using eutectic mixture with menthol, Drug Deliv. J. Deliv. Target. Ther. Agents. 10 (2003) 179-183, https://doi.org/10.1080/713840406. open in new tab
  45. L. Kang, H.W. Jun, J.W. McCall, Physicochemical studies of lidocaine-menthol binary systems for enhanced membrane transport, Int. J. Pharm. 206 (2000) 35-42, https://doi.org/10.1016/S0378-5173(00)00505-6. open in new tab
  46. S. Nazzal, I.I. Smalyukh, O.D. Lavrentovich, M.A. Khan, Preparation and in vitro characterization of a eutectic based semisolid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: mechanism and progress of emulsion formation, Int. J. Pharm. 235 (2002) 247-265, https://doi.org/10.1016/S0378-5173(02) 00003-0. open in new tab
  47. M. Ruesgas-Ramón, M.C. Figueroa-Espinoza, E. Durand, Application of Deep Eutectic Solvents (DES) for phenolic compounds extraction: overview, challenges, and opportunities, J. Agric. Food Chem. 65 (2017) 3591-3601, https://doi.org/ 10.1021/acs.jafc.7b01054. open in new tab
  48. J. Chen, M. Liu, Q. Wang, H. Du, L. Zhang, Deep eutectic solvent-based micro- wave-assisted method for extraction of hydrophilic and hydrophobic components from radix salviae miltiorrhizae, Molecules 21 (2016), https://doi.org/10.3390/ molecules21101383. open in new tab
  49. A.K. Dwamena, Investigating anions and hydrophobicity of deep eutectic solvents by experiment and computational software, Electronic Theses and Dissertations (2019). open in new tab
  50. C. Florindo, L.G. Celia-Silva, L.F.G. Martins, L.C. Branco, I.M. Marrucho, Supramolecular hydrogel based on a sodium deep eutectic solvent, Chem. Commun. 54 (2018) 7527-7530, https://doi.org/10.1039/c8cc03266a. open in new tab
  51. S. Basak, J. Nanda, A. Banerjee, Multi-stimuli responsive self-healing metallo- hydrogels: tuning of the gel recovery property, Chem. Commun. 50 (2014) 2356-2359, https://doi.org/10.1039/c3cc48896a. open in new tab
  52. W. Deng, L. Yu, X. Li, J. Chen, X. Wang, Z. Deng, Y. Xiao, Hexafluoroisopropanol- based hydrophobic deep eutectic solvents for dispersive liquid-liquid micro- extraction of pyrethroids in tea beverages and fruit juices, Food Chem. 274 (2019) 891-899, https://doi.org/10.1016/j.foodchem.2018.09.048. open in new tab
  53. Y.L. Yang, Y. Kou, PDetermination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe, Chem. Commun. 4 (2004) 226-227, https://doi.org/ 10.1039/b311615h. open in new tab
  54. E.P. Parry, An infrared study of pyridi, J. Catal. 2 (1963) 371-379 http:// dns2.asia.edu.tw/∼ysho/YSHO-English/1000CE/PDF/J Cat2371.pdf. open in new tab
  55. W.N. Sanders, J.E. Berger, Measurement and significance of the Hammett acidity function in non-hydroxylic solvents, Anal. Chem. 39 (1967) 1473-1476, https:// doi.org/10.1021/ac60256a047. open in new tab
  56. M.B. Taysun, E. Sert, F.S. Atalay, Physical properties of benzyl tri-methyl ammo- nium chloride based deep eutectic solvents and employment as catalyst, J. Mol. Liq. 223 (2016) 845-852, https://doi.org/10.1016/j.molliq.2016.07.148. open in new tab
  57. S. Zhu, J. Zhou, H. Jia, H. Zhang, Liquid-liquid microextraction of synthetic pigments in beverages using a hydrophobic deep eutectic solvent, Food Chem. 243 (2018) 351-356, https://doi.org/10.1016/j.foodchem.2017.09.141. open in new tab
  58. P. Makoś, A. Fernandes, G. Boczkaj, Method for the determination of carboxylic acids in industrial effluents using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography-mass spectrometry, J. Chromatogr. A. 1517 (2017) 26-34, https://doi.org/10.1016/J.CHROMA.2017. 08.045. open in new tab
  59. O. Aschenbrenner, S. Supasitmongkol, M. Taylor, P. Styring, Measurement of va- pour pressures of ionic liquids and other low vapour pressure solvents, Green Chem. 11 (2009) 1217-1221, https://doi.org/10.1039/b904407h. open in new tab
  60. C.H.J.T. Dietz, M.C. Kroon, M. Di Stefano, M. Van Sint Annaland, F. Gallucci, Selective separation of furfural and hydroxymethylfurfural from an aqueous so- lution using a supported hydrophobic deep eutectic solvent liquid membrane, Faraday Discuss 206 (2018) 77-92, https://doi.org/10.1039/c7fd00152e. open in new tab
  61. K. Zhang, S. Li, C. Liu, Q. Wang, Y. Wang, J. Fan, A hydrophobic deep eutectic solvent-based vortex-assisted dispersive liquid-liquid microextraction combined with HPLC for the determination of nitrite in water and biological samples, J. Sep. Sci. 42 (2019) 574-581, https://doi.org/10.1002/jssc.201800921. open in new tab
  62. F. Barontini, V. Cozzani, Thermogravimetry as a screening tool for the estimation of the vapor pressures of pure compounds, J. Therm. Anal. Calorim. 89 (2007) 309-314, https://doi.org/10.1007/s10973-006-7915-5. open in new tab
  63. P. Phang, D. Dollimore, S.J. Evans, A comparative method for developing vapor pressure curves based on evaporation data obtained from a simultaneous TG-DTA unit, Thermochim. Acta. 392 (2002) 119-125, https://doi.org/10.1016/S0040- 6031(02)00092-8. open in new tab
  64. M.A.A. Rocha, J.A.P. Coutinho, L.M.N.B.F. Santos, Cation symmetry effect on the volatility of ionic liquids, J. Phys. Chem. B. 116 (2012) 10922-10927, https://doi. org/10.1021/jp306937f. open in new tab
  65. K. Shahbaz, F.S. Mjalli, G. Vakili-Nezhaad, I.M. AlNashef, A. Asadov, M.M. Farid, Thermogravimetric measurement of deep eutectic solvents vapor pressure, J. Mol. Liq. 222 (2016) 61-66, https://doi.org/10.1016/j.molliq.2016.06.106. open in new tab
  66. C.H.J.T. Dietz, J.T. Creemers, M.A. Meuleman, C. Held, G. Sadowski, M. Van Sint Annaland, F. Gallucci, M.C. Kroon, Determination of the total vapor pressure of hydrophobic deep eutectic solvents: experiments and perturbed-chain statistical associating fluid theory modeling, ACS Sustain. Chem. Eng. 7 (2019) 4047-4057, https://doi.org/10.1021/acssuschemeng.8b05449. open in new tab
  67. M. Francisco, A. van den Bruinhorst, L.F. Zubeir, C.J. Peters, M.C. Kroon, A new low transition temperature mixture (LTTM) formed by choline chloride+lactic acid: characterization as solvent for CO 2 capture, Fluid Phase Equilib. 340 (2013) 77-84, https://doi.org/10.1016/j.fluid.2012.12.001. open in new tab
  68. W. Bi, M. Tian, K.H. Row, Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization, J. Chromatogr. A. 1285 (2013) 22-30, https://doi.org/10.1016/j. chroma.2013.02.041. open in new tab
  69. S. Zhu, J. Zhou, H. Jia, H. Zhang, Liquid -liquid microextraction of synthetic pigments in beverages using a hydrophobic deep eutectic solvent, Food Chem 243 (2018) 351-356, https://doi.org/10.1016/j.foodchem.2017.09.141. open in new tab
  70. S.M. Yousefi, F. Shemirani, S.A. Ghorbanian, Hydrophobic deep eutectic solvents in developing microextraction methods based on solidification of floating drop: application to the trace HPLC/FLD determination of PAHs, Chromatographia 81 (2018) 1201-1211, https://doi.org/10.1007/s10337-018-3548-7. open in new tab
  71. E.E. Tereshatov, M.Y. Boltoeva, C.M. Folden, First evidence of metal transfer into hydrophobic deep eutectic and low-transition-temperature mixtures: indium ex- traction from hydrochloric and oxalic acids, Green Chem. 18 (2016) 4616-4622, https://doi.org/10.1039/c5gc03080c. open in new tab
  72. M. Gilmore, É.N. McCourt, F. Connolly, P. Nockemann, M. Swadźba-Kwaśny, J.D. Holbrey, Hydrophobic deep eutectic solvents incorporating trioctylphosphine oxide: advanced liquid extractants, ACS Sustain. Chem. Eng. 6 (2018) 17323-17332, https://doi.org/10.1021/acssuschemeng.8b04843. open in new tab
  73. R. Liu, X. Zhou, Selective transformations of cyclopentadienylligands of transition- metal and rare-earth metal complexes, Chem. Commun. 49 (2013) 3171-3187, https://doi.org/10.1039/c2cc35637f. open in new tab
  74. S. Mahboobeh, Y. Farzaneh, S. Sohrab, A. Ghorbanian, Hydrophobic deep eutectic solvents in developing microextraction methods based on solidification of floating drop : application to the trace HPLC / FLD determination of PAHs, Chromatographia 81 (2018) 1201-1211, https://doi.org/10.1007/s10337-018- 3548-7. open in new tab
  75. R. Verma, T. Banerjee, Liquid-Liquid extraction of lower alcohols using menthol- based hydrophobic deep eutectic solvent: experiments and COSMO-SAC predic- tions, Ind. Eng. Chem. Res. 57 (2018) 3371-3381, https://doi.org/10.1021/acs. iecr.7b05270. open in new tab
  76. P. Makoś, A. Przyjazny, G. Boczkaj, Hydrophobic deep eutectic solvents as "green" extraction media for polycyclic aromatic hydrocarbons in aqueous samples, J. Chromatogr. A. 1570 (2018) 28-37, https://doi.org/10.1016/j.chroma.2018.07. 070. open in new tab
  77. T.E. Phelps, N. Bhawawet, S.S. Jurisson, G.A. Baker, Efficient and selective ex- traction of 99mTcO4-from Aqueous media using hydrophobic deep eutectic sol- vents, ACS Sustain. Chem. Eng. 6 (2018) 13656-13661, https://doi.org/10.1021/ acssuschemeng.8b03950. open in new tab
  78. S. Ruggeri, F. Poletti, C. Zanardi, L. Pigani, B. Zanfrognini, E. Corsi, N. Dossi, M. Salomäki, H. Kivelä, J. Lukkari, F. Terzi, Chemical and electrochemical prop- erties of a hydrophobic deep eutectic solvent, Electrochim. Acta. 295 (2019) 124-129, https://doi.org/10.1016/j.electacta.2018.10.086. open in new tab
  79. D.J.G.P. Van Osch, L.F. Zubeir, A. Van Den Bruinhorst, M.A.A. Rocha, M.C. Kroon, Hydrophobic deep eutectic solvents as water-immiscible extractants, Green Chem. 17 (2015) 4518-4521, https://doi.org/10.1039/c5gc01451d. open in new tab
  80. J. Cao, L. Chen, M. Li, F. Cao, L. Zhao, E. Su, Two-phase systems developed with hydrophilic and hydrophobic deep eutectic solvents for simultaneously extracting various bioactive compounds with different polarities, Green. Chem. 20 (2018) 1879-1886, https://doi.org/10.1039/c7gc03820h. open in new tab
  81. D. Yang, Y. Wang, J. Peng, C. Xun, Y. Yang, A green deep eutectic solvents mi- croextraction coupled with acid-base induction for extraction of trace phenolic compounds in large volume water samples, Ecotoxicol. Environ. Saf. 178 (2019) 130-136, https://doi.org/10.1016/J.ECOENV.2019.04.021. open in new tab
  82. B. Hashemi, P. Zohrabi, K.H. Kim, M. Shamsipur, A. Deep, J. Hong, Recent ad- vances in liquid-phase microextraction techniques for the analysis of environmental pollutants, TrAC -Trends Anal. Chem. 97 (2017) 83-95, https:// doi.org/10.1016/j.trac.2017.08.014. open in new tab
  83. D. Ge, Y. Wang, Q. Jiang, E. Dai, A deep eutectic solvent as an extraction solvent to separate and preconcentrate parabens in water samples using in situ liquid-liquid microextraction, J. Braz. Chem. Soc. 30 (2019) 1203-1210, https://doi.org/10. 21577/0103-5053.20190014. open in new tab
  84. A.Y. Shishov, M.V. Chislov, D.V. Nechaeva, L.N. Moskvin, A.V. Bulatov, A new approach for microextraction of non-steroidal anti-inflammatory drugs from human urine samples based on in-situ deep eutectic mixture formation, J. Mol. Liq. 272 (2018) 738-745, https://doi.org/10.1016/j.molliq.2018.10.006. open in new tab
  85. A. Shishov, R. Chromá, C. Vakh, J. Kuchár, A. Simon, V. Andruch, A. Bulatov, In situ decomposition of deep eutectic solvent as a novel approach in liquid-liquid microextraction, Anal. Chim. Acta. 1065 (2019) 49-55, https://doi.org/10.1016/ J.ACA.2019.03.038. open in new tab
  86. E.A. Dil, M. Ghaedi, A. Asfaram, Application of hydrophobic deep eutectic solvent as the carrier for ferrofluid: a novel strategy for pre-concentration and determi- nation of mefenamic acid in human urine samples by high performance liquid chromatography under experimental design optimization, Talanta 202 (2019) 526-530, https://doi.org/10.1016/J.TALANTA.2019.05.027. open in new tab
  87. M. Rezaee, Y. Assadi, M.-.R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, Determination of organic compounds in water using dispersive liquid-liquid mi- croextraction, J. Chromatogr. A. 1116 (2006) 1-9, https://doi.org/10.1016/J. CHROMA.2006.03.007. open in new tab
  88. A. Zgoła-Grześkowiak, T. Grześkowiak, Dispersive liquid-liquid microextraction, TrAC Trends Anal. Chem. 30 (2011) 1382-1399, https://doi.org/10.1016/J. TRAC.2011.04.014. open in new tab
  89. Q. Wang, R. Chen, W. Shatner, Y. Cao, Y. Bai, State-of-the-art on the technique of dispersive liquid-liquid microextraction, Ultrason. Sonochem. 51 (2019) 369-377, https://doi.org/10.1016/J.ULTSONCH.2018.08.010. open in new tab
  90. A. Zgoła-Grześkowiak, T. Grześkowiak, Dispersive liquid-liquid microextraction, TrAC Trends Anal. Chem. 30 (2011) 1382-1399, https://doi.org/10.1016/J. TRAC.2011.04.014. open in new tab
  91. P. Makoś, A. Fernandes, G. Boczkaj, Method for the simultaneous determination of monoaromatic and polycyclic aromatic hydrocarbons in industrial effluents using dispersive liquid-liquid microextraction with gas chromatography-mass spectro- metry, J. Sep. Sci. 41 (2018), https://doi.org/10.1002/jssc.201701464. open in new tab
  92. G. Boczkaj, P. Makoś, A. Przyjazny, Application of dispersive liquid-liquid mi- croextraction and gas chromatography with mass spectrometry for the determi- nation of oxygenated volatile organic compounds in effluents from the production of petroleum bitumen, J. Sep. Sci. 39 (2016) 2604-2615, https://doi.org/10. 1002/jssc.201501355. open in new tab
  93. G. Boczkaj, P. Makoś, A. Fernandes, A. Przyjazny, New procedure for the control of the treatment of industrial effluents to remove volatile organosulfur compounds, J. Sep. Sci. 39 (2016) 3946-3956, https://doi.org/10.1002/jssc.201600608. open in new tab
  94. G. Boczkaj, P. Makoś, A. Fernandes, A. Przyjazny, New procedure for the ex- amination of the degradation of volatile organonitrogen compounds during the treatment of industrial effluents, J. Sep. Sci. 40 (2017) 1301-1309, https://doi. org/10.1002/jssc.201601237. open in new tab
  95. L. Kocúrová, I.S. Balogh, J. Šandrejová, V. Andruch, Recent advances in dispersive liquid-liquid microextraction using organic solvents lighter than water. A review, Microchem. J. 102 (2012) 11-17, https://doi.org/10.1016/J.MICROC.2011.12. 002. open in new tab
  96. I. Rykowska, J. Ziemblińska, I. Nowak, Modern approaches in dispersive liquid- liquid microextraction (DLLME) based on ionic liquids: a review, J. Mol. Liq. 259 (2018) 319-339, https://doi.org/10.1016/J.MOLLIQ.2018.03.043. open in new tab
  97. M.A. Farajzadeh, M.R. Afshar Mogaddam, M. Aghanassab, Deep eutectic solvent- based dispersive liquid-liquid microextraction, Anal. Methods. 8 (2016) 2576-2583, https://doi.org/10.1039/c5ay03189c. open in new tab
  98. Y. Liu, W. Xu, H. Zhang, W. Xu, Hydrophobic deep eutectic solvent-based dis- persive liquid-liquid microextraction for the simultaneous enantiomeric analysis of five β-agonists in the environmental samples, Electrophoresis (2019) 1-9, https://doi.org/10.1002/elps.201900149. open in new tab
  99. Y. An, W. Ma, K.H. Row, Preconcentration and determination of chlorophenols in wastewater with dispersive liquid-liquid microextraction using hydrophobic deep eutectic solvents, Anal. Lett. 0 (2019) 1-11, https://doi.org/10.1080/00032719. 2019.1646754. open in new tab
  100. S. Sadeghi, A. Davami, A rapid dispersive liquid-liquid microextraction based on hydrophobic deep eutectic solvent for selective and sensitive preconcentration of thorium in water and rock samples: a multivariate study, J. Mol. Liq. 291 (2019) 111242, , https://doi.org/10.1016/J.MOLLIQ.2019.111242. open in new tab
  101. Y.-.M. Liu, F.-.P. Zhang, B.-.Y. Jiao, J.-.Y. Rao, G. Leng, Automated dispersive li- quid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples, J. Chromatogr. A. 1493 (2017) 1-9, https://doi. org/10.1016/J.CHROMA.2017.03.002. open in new tab
  102. M. Alexovič, M. Wieczorek, J. Kozak, P. Kościelniak, I.S. Balogh, V. Andruch, An automatic, vigorous-injection assisted dispersive liquid-liquid microextraction technique for stopped-flow spectrophotometric detection of boron, Talanta 133 (2015) 127-133, https://doi.org/10.1016/J.TALANTA.2014.04.095. open in new tab
  103. B. Horstkotte, K. Fikarová, D.J. Cocovi-Solberg, H. Sklenářová, P. Solich, M. Miró, Online coupling of fully automatic in-syringe dispersive liquid-liquid micro- extraction with oxidative back-extraction to inductively coupled plasma spectro- metry for sample clean-up in elemental analysis: a proof of concept, Talanta 173 (2017) 79-87, https://doi.org/10.1016/J.TALANTA.2017.05.063. open in new tab
  104. A. Shishov, N. Volodina, D. Nechaeva, S. Gagarinova, A. Bulatov, An automated homogeneous liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of caffeine in beverages, Microchem. J. 144 (2019) 469-473, https://doi.org/10.1016/J.MICROC.2018.10.014. open in new tab
  105. A. Shishov, P. Terno, L. Moskvin, A. Bulatov, In-syringe dispersive liquid-liquid microextraction using deep eutectic solvent as disperser: determination of chro- mium (VI) in beverages, Talanta 206 (2020) 120209, , https://doi.org/10.1016/J. TALANTA.2019.120209. open in new tab
  106. D. Ge, Y. Zhang, Y. Dai, S. Yang, Air-assisted dispersive liquid-liquid micro- extraction based on a new hydrophobic deep eutectic solvent for the pre- concentration of benzophenone-type UV filters from aqueous samples, J. Sep. Sci. 41 (2018) 1635-1643, https://doi.org/10.1002/jssc.201701282. open in new tab
  107. M. Rajabi, N. Ghassab, M. Hemmati, A. Asghari, Emulsification microextraction of amphetamine and methamphetamine in complex matrices using an up-to-date generation of eco-friendly and relatively hydrophobic deep eutectic solvent, J. Chromatogr. A. 1576 (2018) 1-9, https://doi.org/10.1016/J.CHROMA.2018.07. 040. open in new tab
  108. D. Djozan, M.A. Farajzadeh, S.M. Sorouraddin, T. Baheri, Molecularly imprinted- solid phase extraction combined with simultaneous derivatization and dispersive liquid-liquid microextraction for selective extraction and preconcentration of methamphetamine and ecstasy from urine samples followed by gas chromato- graphy, J. Chromatogr. A. 1248 (2012) 24-31, https://doi.org/10.1016/J. CHROMA.2012.05.085. open in new tab
  109. N. Lamei, M. Ezoddin, K. Abdi, Air assisted emulsification liquid-liquid micro- extraction based on deep eutectic solvent for preconcentration of methadone in water and biological samples, Talanta 165 (2017) 176-181, https://doi.org/10. 1016/J.TALANTA.2016.11.036. open in new tab
  110. A.G. Moghadam, M. Rajabi, A. Asghari, Efficient and relatively safe emulsification microextraction using a deep eutectic solvent for influential enrichment of trace main anti-depressant drugs from complicated samples, J. Chromatogr. B. 1072 (2018) 50-59, https://doi.org/10.1016/J.JCHROMB.2017.09.042. open in new tab
  111. R.A. Zounr, M. Tuzen, M.Y. Khuhawar, A simple and green deep eutectic solvent based air assisted liquid phase microextraction for separation, preconcentration and determination of lead in water and food samples by graphite furnace atomic absorption spectrometry, J. Mol. Liq. 259 (2018) 220-226, https://doi.org/10. 1016/J.MOLLIQ.2018.03.034. open in new tab
  112. H.M. Al-Saidi, A.A.A. Emara, The recent developments in dispersive liquid-liquid microextraction for preconcentration and determination of inorganic analytes, J. Saudi Chem. Soc. 18 (2014) 745-761, https://doi.org/10.1016/J.JSCS.2011.11. 005. open in new tab
  113. H. Zeng, K. Qiao, X. Li, M. Yang, S. Zhang, R. Lu, J. Li, H. Gao, W. Zhou, Dispersive liquid-liquid microextraction based on the solidification of deep eutectic solvent for the determination of benzoylureas in environmental water samples, J. Sep. Sci. 40 (2017) 4563-4570, https://doi.org/10.1002/jssc.201700890. open in new tab
  114. B. Mostafavi, A. Feizbakhsh, E. Konoz, H. Faraji, Hydrophobic deep eutectic sol- vent based on centrifugation-free dispersive liquid-liquid microextraction for speciation of selenium in aqueous samples: one step closer to green analytical chemistry, Microchem. J. 148 (2019) 582-590, https://doi.org/10.1016/j.microc. 2019.05.021. open in new tab
  115. S. Tang, T. Qi, P.D. Ansah, J.C. Nalouzebi Fouemina, W. Shen, C. Basheer, H.K. Lee, Single-drop microextraction, TrAC Trends Anal. Chem. 108 (2018) 306-313, https://doi.org/10.1016/J.TRAC.2018.09.016. open in new tab
  116. A.R. Zarei, M. Nedaei, S.A. Ghorbanian, Ferrofluid of magnetic clay and menthol based deep eutectic solvent: application in directly suspended droplet micro- extraction for enrichment of some emerging contaminant explosives in water and soil samples, J. Chromatogr. A. 1553 (2018) 32-42, https://doi.org/10.1016/J. CHROMA.2018.04.023. open in new tab
  117. S.M. Yousefi, F. Shemirani, S.A. Ghorbanian, Enhanced headspace single drop microextraction method using deep eutectic solvent based magnetic bucky gels: application to the determination of volatile aromatic hydrocarbons in water and urine samples, J. Sep. Sci. 41 (2018) 966-974, https://doi.org/10.1002/jssc. 201700807. open in new tab
  118. S. Pedersen-Bjergaard, K.E. Rasmussen, Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis, Anal. Chem. 71 (1999) 2650-2656, https://doi.org/10.1021/ac990055n. open in new tab
  119. A. Esrafili, M. Baharfar, M. Tajik, Y. Yamini, M. Ghambarian, Two-phase hollow fiber liquid-phase microextraction, TrAC Trends Anal. Chem. 108 (2018) 314-322, https://doi.org/10.1016/J.TRAC.2018.09.015. open in new tab
  120. M.M. Khataei, Y. Yamini, A. Nazaripour, M. Karimi, Novel generation of deep eutectic solvent as an acceptor phase in three-phase hollow fiber liquid phase microextraction for extraction and preconcentration of steroidal hormones from biological fluids, Talanta 178 (2018) 473-480, https://doi.org/10.1016/j.talanta. 2017.09.068. open in new tab
  121. M. Rajabi, N. Ghassab, M. Hemmati, A. Asghari, Highly effective and safe inter- mediate based on deep eutectic medium for carrier less-three phase hollow fiber microextraction of antiarrhythmic agents in complex matrices, J. Chromatogr. B. 1104 (2019) 196-204, https://doi.org/10.1016/J.JCHROMB.2018.11.008. open in new tab
  122. L.M. Madikizela, S. Ncube, L. Chimuka, Recent developments in selective mate- rials for solid phase extraction, Chromatographia 82 (2018) 1171-1189, https:// doi.org/10.1007/s10337-018-3644-8. open in new tab
  123. L. Liu, W. Tang, B. Tang, D. Han, K.H. Row, T. Zhu, Pipette-tip solid-phase ex- traction based on deep eutectic solvent modified graphene for the determination of sulfamerazine in river water, J. Sep. Sci. 40 (2017) 1887-1895, https://doi.org/ 10.1002/jssc.201601436. open in new tab
  124. D.-.D. Wang, Y. Zhao, M.-.N. Ou yang, H.-.M. Guo, Z.-.H. Yang, Magnetic poly- dopamine modified with deep eutectic solvent for the magnetic solid-phase ex- traction of sulfonylurea herbicides in water samples, J. Chromatogr. A. 1601 (2019) 53-59, https://doi.org/10.1016/J.CHROMA.2019.05.011. open in new tab
  125. J. Chen, Y. Wang, X. Wei, P. Xu, W. Xu, R. Ni, J. Meng, Magnetic solid-phase extraction for the removal of mercury from water with ternary hydrosulphonyl- based deep eutectic solvent modified magnetic graphene oxide, Talanta 188 (2018) 454-462, https://doi.org/10.1016/J.TALANTA.2018.06.016. open in new tab
  126. M. Karimi, A.M.H. Shabani, S. Dadfarnia, Deep eutectic solvent-mediated extrac- tion for ligand-less preconcentration of lead and cadmium from environmental samples using magnetic nanoparticles, Microchim. Acta. 183 (2016) 563-571, https://doi.org/10.1007/s00604-015-1671-9. open in new tab
  127. C.L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem. 62 (1990) 2145-2148, https://doi. org/10.1021/ac00218a019. open in new tab
  128. T. Li, Y. Song, J. Xu, J. Fan, A hydrophobic deep eutectic solvent mediated sol-gel coating of solid phase microextraction fiber for determination of toluene, ethyl- benzene and o-xylene in water coupled with GC-FID, Talanta 195 (2019) 298-305, https://doi.org/10.1016/J.TALANTA.2018.11.085. open in new tab
  129. B. Socas-Rodríguez, A.V. Herrera-Herrera, M. Asensio-Ramos, J. Hernández- Borges, Dispersive solid-phase extraction, Anal. Sep. Sci. (2015) 1525-1570, https://doi.org/10.1002/9783527678129.assep056. open in new tab
  130. N. Lamei, M. Ezoddin, M.S. Ardestani, K. Abdi, Dispersion of magnetic graphene oxide nanoparticles coated with a deep eutectic solvent using ultrasound assis- tance for preconcentration of methadone in biological and water samples followed by GC-FID and GC-MS, Anal. Bioanal. Chem. 409 (2017) 6113-6121, https://doi. org/10.1007/s00216-017-0547-8. open in new tab
  131. A.R. Zarei, M. Nedaei, S.A. Ghorbanian, Application of deep eutectic solvent based magnetic colloidal gel for dispersive solid phase extraction of ultra-trace amounts of some nitroaromatic compounds in water samples, J. Mol. Liq. 246 (2017) 58-65, https://doi.org/10.1016/J.MOLLIQ.2017.09.039. open in new tab
  132. S.M. Yousefi, F. Shemirani, S.A. Ghorbanian, Deep eutectic solvent magnetic bucky gels in developing dispersive solid phase extraction: application for ultra trace analysis of organochlorine pesticides by GC-micro ECD using a large-volume injection technique, Talanta 168 (2017) 73-81, https://doi.org/10.1016/J. TALANTA.2017.03.020. open in new tab
  133. T. Khezeli, A. Daneshfar, Dispersive micro-solid-phase extraction of dopamine, epinephrine and norepinephrine from biological samples based on green deep eutectic solvents and Fe 3 O 4 @MIL-100 (Fe) core-shell nanoparticles grafted with pyrocatechol, RSC Adv. 5 (2015) 65264-65273, https://doi.org/10.1039/ c5ra08058d. open in new tab
  134. A. Mohebbi, S. Yaripour, M.A. Farajzadeh, M.R. Afshar Mogaddam, Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic anti- depressant drugs in biological fluids, J. Chromatogr. A. 1571 (2018) 84-93, https://doi.org/10.1016/J.CHROMA.2018.08.022. open in new tab
  135. J.L. Benedé, A. Chisvert, D.L. Giokas, A. Salvador, Development of stir bar sorp- tive-dispersive microextraction mediated by magnetic nanoparticles and its ana- lytical application to the determination of hydrophobic organic compounds in aqueous media, J. Chromatogr. A. 1362 (2014) 25-33, https://doi.org/10.1016/J. CHROMA.2014.08.024. open in new tab
  136. A.R. Zarei, M. Nedaei, S.A. Ghorbanian, Deep eutectic solvent based magnetic nanofluid in the development of stir bar sorptive dispersive microextraction: an efficient hyphenated sample preparation for ultra-trace nitroaromatic explosives extraction in wastewater, J. Sep. Sci. 40 (2017) 4757-4764, https://doi.org/10. 1002/jssc.201700915. open in new tab
  137. X. Liu, C. Liu, H. Qian, Y. Qu, S. Zhang, R. Lu, H. Gao, W. Zhou, Ultrasound- assisted dispersive liquid-liquid microextraction based on a hydrophobic deep eutectic solvent for the preconcentration of pyrethroid insecticides prior to de- termination by high-performance liquid chromatography, Microchem. J. 146 (2019) 614-621, https://doi.org/10.1016/j.microc.2019.01.048. open in new tab
  138. Y. Ji, Z. Meng, J. Zhao, H. Zhao, L. Zhao, Eco-friendly ultrasonic assisted li- quid-liquid microextraction method based on hydrophobic deep eutectic solvent for the determination of sulfonamides in fruit juices, J. Chromatogr. A. (2019), https://doi.org/10.1016/J.CHROMA.2019.460520 460520. open in new tab
  139. H. Wang, L. Hu, X. Liu, S. Yin, R. Lu, S. Zhang, W. Zhou, H. Gao, Deep eutectic solvent-based ultrasound-assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of ultraviolet filters in water samples, J. Chromatogr. A. 1516 (2017) 1-8, https://doi.org/10. 1016/J.CHROMA.2017.07.073. open in new tab
  140. N. Altunay, A. Elik, R. Gürkan, A. novel, green and safe ultrasound-assisted emulsification liquid phase microextraction based on alcohol-based deep eutectic solvent for determination of patulin in fruit juices by spectrophotometry, J. Food Compos. Anal. 82 (2019) 103256, , https://doi.org/10.1016/J.JFCA.2019. 103256. open in new tab
  141. G.S. Kanberoglu, E. Yilmaz, M. Soylak, Developing a new and simple ultrasound- assisted emulsification liquid phase microextraction method built upon deep eu- tectic solvents for Patent Blue V in syrup and water samples, Microchem. J. 145 (2019) 813-818, https://doi.org/10.1016/J.MICROC.2018.11.053. open in new tab
  142. A. Thongsaw, Y. Udnan, G.M. Ross, W.C. Chaiyasith, Speciation of mercury in water and biological samples by eco-friendly ultrasound-assisted deep eutectic solvent based on liquid phase microextraction with electrothermal atomic ab- sorption spectrometry, Talanta 197 (2019) 310-318, https://doi.org/10.1016/J. TALANTA.2019.01.018. open in new tab
  143. E. Yilmaz, M. Soylak, Ultrasound assisted-deep eutectic solvent based on emulsi- fication liquid phase microextraction combined with microsample injection flame atomic absorption spectrometry for valence speciation of chromium(III/VI) in environmental samples, Talanta 160 (2016) 680-685, https://doi.org/10.1016/J. TALANTA.2016.08.001. open in new tab
  144. P. Makoś, A. Fernandes, A. Przyjazny, G. Boczkaj, Sample preparation procedure using extraction and derivatization of carboxylic acids from aqueous samples by means of deep eutectic solvents for gas chromatographic-mass spectrometric analysis, J. Chromatogr. A. 1555 (2018) 10-19, https://doi.org/10.1016/J. CHROMA.2018.04.054. open in new tab
  145. A. Safavi, R. Ahmadi, A.M. Ramezani, Vortex-assisted liquid-liquid microextrac- tion based on hydrophobic deep eutectic solvent for determination of mal- ondialdehyde and formaldehyde by HPLC-UV approach, Microchem. J. 143 (2018) 166-174, https://doi.org/10.1016/J.MICROC.2018.07.036. open in new tab
  146. M. Faraji, Novel hydrophobic deep eutectic solvent for vortex assisted dispersive liquid-liquid micro-extraction of two auxins in water and fruit juice samples and determination by high performance liquid chromatography, Microchem. J. 150 (2019) 104130, , https://doi.org/10.1016/J.MICROC.2019.104130. open in new tab
  147. A. Chisvert, I.P. Román, L. Vidal, A. Canals, Simple and commercial readily- available approach for the direct use of ionic liquid-based single-drop micro- extraction prior to gas chromatography: determination of chlorobenzenes in real water samples as model analytical application, J. Chromatogr. A. 1216 (2009) 1290-1295, https://doi.org/10.1016/J.CHROMA.2008.12.078. open in new tab
Verified by:
Gdańsk University of Technology

seen 52 times

Recommended for you

Meta Tags