Identification of evolutionary conserved DNA sequence and corresponding S21 ribosomal protein region for diagnostic purposes of all Borrelia spirochetes - Publication - Bridge of Knowledge

Search

Identification of evolutionary conserved DNA sequence and corresponding S21 ribosomal protein region for diagnostic purposes of all Borrelia spirochetes

Abstract

It is still under investigation, whether all Borrelia sp. causing Lyme borreliosis and other diseases are already identified and properly classified as human pathogens. For this reason, it is of great importance to develop a diagnostic ELISA test that detects all Borrelia sp. The aim of this study was to identify conserved DNA and protein regions present in all currently known Borrelia sp. In experimental studies 31 available Borrelia sp. genomes were aligned and screened for the presence of evolutionary conserved regions. As a result of bioinformatics analysis, one evolutionally conserved DNA region encoding a core fragment of the S21 ribosomal protein was identified. Both a couple of genus-specific PCR primers and the S21 protein B-cell epitope were designed for prospective diagnostic purposes.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cite as

Full text

download paper
downloaded 36 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-SA open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Acta Biochimica Polonica no. 66, pages 1 - 4,
ISSN: 0001-527X
Language:
English
Publication year:
2019
Bibliographic description:
Kotłowski R., Holec-Gąsior L.: Identification of evolutionary conserved DNA sequence and corresponding S21 ribosomal protein region for diagnostic purposes of all Borrelia spirochetes// Acta Biochimica Polonica. -Vol. 66, (2019), s.1-4
DOI:
Digital Object Identifier (open in new tab) 10.18388/abp.2018_2657
Bibliography: test
  1. Aguero-Rosenfeld ME, Nowakowski J, McKenna DF, Carbonaro CA, Wormser GP (1993) Serodiagnosis in early Lyme disease. J Clin Mi- crobiol 31: 3090-3095 open in new tab
  2. Alcaro MC, Peroni E, Rovero P, Papini AM (2003) Synthetic peptides in the diagnosis of HIV infection. Curr Protein Pept Sci 4: 285-290 open in new tab
  3. Barstad B, Quarsten H, Tveitnes D, Noraas S, Ask IS, Saeed M, Bosse F, Vigemyr G, Huber I, Øymar K (2018) Direct molecular detec- tion and genotyping of Borrelia burgdorferi sensu lato in cerebrospinal fluid of children with lyme neuroborreliosis. J Clin Microbiol 56. pii: e01868-17. doi: 10.1128/JCM.01868-17 open in new tab
  4. Bieri P, Leibundgut M, Saurer M, Boehringer D, Ban N (2017) The complete structure of the chloroplast 70S ribosome in complex with translation factor pY. EMBO J 36: 475-486. doi: 10.15252/ embj.201695959 open in new tab
  5. Cutler SJ, Ruzic-Sabljic E, Potkonjak A (2017) Emerging borreliae - Expanding beyond Lyme borreliosis. Mol Cell Probes 31: 22-27. doi: 10.1016/j.mcp.2016.08.003 open in new tab
  6. Drapała D, Holec-Gąsior L, Kur J (2015) New recombinant chimeric antigens, P35-MAG1, MIC1-ROP1, and MAG1-ROP1, for the se- rodiagnosis of human toxoplasmosis. Diagn Microbiol Infect Dis 82: 34-39 open in new tab
  7. Ferra B, Holec-Gąsior L, Kur J (2015) A new Toxoplasma gondii chi- meric antigen containing fragments of SAG2, GRA1, and ROP1 proteins-impact of immunodominant sequences size on its diagnos- tic usefulness. Parasitol Res 114: 3291-3299. doi: 10.1007/s00436- 015-4552-6 open in new tab
  8. Gomes-Solecki MJ, Dunn JJ, Luft BJ, Castillo J, Dykhuizen DE, Yang X, Glass JD, Dattwyler RJ (2000) Recombinant chimeric Borrelia proteins for diagnosis of Lyme disease. J Clin Microbiol 38: 2530- 2535 open in new tab
  9. Holec-Gąsior L, Ferra B, Drapała D, Lautenbach D, Kur J (2012a) A new MIC1-MAG1 recombinant chimeric antigen can be used in- stead of the Toxoplasma gondii lysate antigen in serodiagnosis of hu- man toxoplasmosis. Clin Vaccine Immunol 19: 57-63 open in new tab
  10. Holec-Gasior L, Ferra B, Drapala D (2012b) MIC1-MAG1-SAG1 chimeric protein, a most effective antigen for detection of human toxoplasmosis. Clin Vaccine Immunol 19: 1977-1979 open in new tab
  11. Jahfari S, Krawczyk A, Coipan EC, Fonville M, Hovius JW, Sprong H, Takumi K (2017) Enzootic origins for clinical manifestations of Lyme borreliosis. Infect Genet Evol 49: 48-54. doi: 10.1016/j. meegid.2016.12.030 open in new tab
  12. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 15: 3059-3066 open in new tab
  13. Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7: 1511-1522. doi:10.1038/nprot.2012.085 open in new tab
  14. Kodym P, Kurzová Z, Berenová D, Pícha D, Smíšková D, Morav- cová L, Malý M (2018) Serological diagnostics of Lyme borreliosis: comparison of universal and Borrelia species-specific tests based on whole-cell and recombinant antigens. J Clin Microbiol 56. pii: e00601- 18. doi: 10.1128/JCM.00601-18 open in new tab
  15. Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2: 2. doi:10.1186/1745-7580-2-2 open in new tab
  16. Motaleb MA, Corum L, Bono JL, Elias AF, Rosa P, Samuels DS, Charon NW (2000) Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Proc Natl Acad Sci USA 97: 10899- 10904. doi: 10.1073/pnas.200221797 open in new tab
  17. Ni XB, Jia N, Jiang BG, Sun T, Zheng YC, Huo QB, Liu K, Ma L, Zhao QM, Yang H, Wang X, Jiang JF, Cao WC (2014) Lyme bor- reliosis caused by diverse genospecies of Borrelia burgdorferi sensu lato in northeastern China. Clin Microbiol Infect 20: 808-814. doi: 10.1111/1469-0691.12532 open in new tab
  18. Parola P, Diatta G, Socolovschi C, Mediannikov O, Tall A, Bassene H, Trape JF, Raoult D (2011) Tick-borne relapsing fever bor- reliosis, rural Senegal. Emerg Infect Dis 17: 883-885. doi: 10.3201/ eid1705.100573 open in new tab
  19. Reed KD (2002) Laboratory testing for Lyme disease: Possibilities and practicalities. J Clin Microbiol 40: 319-324 open in new tab
  20. Rudenko N, Golovchenko M, Růzek D, Piskunova N, Mallátová N, Grubhoffer L (2008) Detection of Borrelia bissettii in cardiac valve tissue of a patient with endocarditis and aortic valve stenosis in the Czech Republic. J Clin Microbiol 46: 3540-3543. doi:10.1128/ JCM.01032-08 open in new tab
  21. Schneider BS, Schriefer ME, Dietrich G, Dolan MC, Morshed MG, Zeidner NS (2008) Borrelia bissettii isolates induce pathology in a murine model of disease. Vector-Borne Zoonotic Dis 8: 623-633. doi:10.1089/vbz.2007.0251 open in new tab
  22. Schreterova E, Bhide M, Potocnakova L, Borszekova Pulzova L (2017) Design, construction and evaluation of multi-epitope antigens for diagnosis of Lyme disease. Ann Agric Environ Med 24: 696-701 open in new tab
  23. Stanek G, Reiter M (2011) The expanding Lyme Borrelia complex - clinical significance of genomic species. Clin Microbiol Infect 17: 487- 493. doi:10.1111/j.1469-0691.2011.03492.x open in new tab
  24. Wodecka B, Leońska A, Skotarczak B. (2010) A comparative analysis of molecular markers for the detection and identification of Borre- lia spirochaetes in Ixodes ricinus. J Med Microbiol 59: 309-314. doi: 10.1099/jmm.0.013508-0 open in new tab
Verified by:
Gdańsk University of Technology

seen 162 times

Recommended for you

Meta Tags