Immunosuppressive properties of amino acid and peptide derivatives of mycophenolic acid - Publication - Bridge of Knowledge

Search

Immunosuppressive properties of amino acid and peptide derivatives of mycophenolic acid

Abstract

Mycophenolic acid (MPA) was coupled with amino acids and biologically active peptides including derivatives of tuftsin to modify its immunosuppressive properties. Both amino acid unit in the case of simple MPA amides and modifications within peptide moiety of MPA - tuftsin conjugates influenced the observed activity. Antiproliferative potential of the obtained conjugates was investigated in vitro and MPA amides with threonine methyl ester and conjugate of MPA with retro-tuftisin occurred to be more selective against PBMC in comparison to parent MPA. Both amino acid and peptide derivatives of MPA acted as inosine-5'-monophosphate dehydrogenase (IMPDH) inhibitors.

Citations

  • 5

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cite as

Full text

download paper
downloaded 31 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY no. 189, pages 1 - 17,
ISSN: 0223-5234
Language:
English
Publication year:
2020
Bibliographic description:
Siebert A., Cholewiński G., Trzonkowski P., Rachoń J.: Immunosuppressive properties of amino acid and peptide derivatives of mycophenolic acid// EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY -Vol. 189, (2020), s.1-17
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.ejmech.2020.112091
Bibliography: test
  1. CNMR (400 MHz,CD3OD-d4) δ ppm: 10.06 (e), 14.98 (f), 18.98 (γ-T4), 22.31 (d), 24.66 (γ-K4), 28.30 (γ-P4), 29.22 (γ-R4), 31.00 (β-R3), 31.96 (β-A3), 33.95 (δ-K5), 35.06 (β-P3), 36.06 (α-A2), 38.66 (β-K3), 40.56 (h), 42.151 (g), 46.868 (ε-K6), 48.332 (δ-R5) 50.85 (δ-P5), 51.48 (α-R2), 53.29 (OMe), 56.93 (α-K2), 57.81 (α-T2), 60.18 (c), 67.01 (β-T3), 69.37 (b), 106.37 (o), 116.03 (l), 122.37 (r), 123.12 (a), 133.63 (j), 145.31 (m), 159.56 (p), 163.42 (k), 170.96 (n), 170.99 (T1), 172.51 (P1), 172.98 (i) 173.26 (K1), 174.24 (R1,A1); open in new tab
  2. 2.2.2.5. Compound MPA-Arg(NO2)-Pro-Lys(Val)-Thr-OMe 3l: Product 3l was obtained with yield 79% as white powder. open in new tab
  3. MPA-RT-Val 3l: 1 HNMR (400 MHz, DMSO-d6) δ ppm: 0.807 (d, J=6.9 Hz, 3H, γ-V4), 0.858 (d, J=6.8 Hz, 3H, δ-V5), 1.026 (d, J=4.2 Hz, 3H, γ-T4), 1.279 (m, 2H, γ-K4), 1.369 (m, 3H, δ-K5, β-R3b), 1.461 (m, 3H, β-K3b, γ-R4), 1.627 (m, 2H, β-K3a, β-R3a), 1.714 (s, 3H, f), 1.792 (m, 2H, γ-P4b, β-P3b), 1.861 (m, 2H, γ-P4a, β-V3), 1.977 (m, 1H, β-P3a), 2.061 (s, 3H, e), 2.114 (m, 2H, g), 2.183 (m, 2H, h), 3.005 (m, 5H, α-V2, ε-K6, δ-R5), 3.262 (d, J=6.7 Hz, 2H, d), 3.502 (m, 1H, δ-P5b), 3.604 (m, 1H, δ-P5a), 3.625 (s, 3H, COOMe), 3.676 (s, 3H, c), 4.096 (m, 1H, β-T3), 4.252 (m, 1H, α-T2), 4.269 (m, 1H, α-K2), 4.3 (m, 1H, α-P2), 4.437 (m, 1H, α-R2), 5.096 (t, J=6,5 Hz, 1H, a), 5.222 (s, 2H, b), 7.803 (d, J=8.4 Hz, 1H, α-TNH), 8.022 (m, 3H, α-RNH, α-KNH, ε-KNH);
  4. CNMR (400 MHz,CD3OD-d4) δ ppm: 10.05 (e), 14.96 (f), 16.99 (δ-V5), 18.22 (γ-V4), 18.97 (γ-T4), 22.28 (d), 24.65 (γ-K4), 28.49 (γ-P4), 29.22 (γ-R4), 31.05 (β-R3), 31.56 (β-V3), 33.96 (δ-K5), 35.07 (β-P3), 38.68 (β-K3), 40.53 (h), 42.16 (g), 46.648 (ε-K6), 47.904 (δ-R5) 50.74 (δ-P5), 51.46 (α-R2), 53.33 (OMe), 56.93 (α-T2), 57.80 (α-V2), 60.1 (α-P2), 60.18 (c), 67.01 (β-T3), 69.39 (b), 106.35 (o), 116.26 (l), 122.3 (r), 123.08 (a), 133.67 (j), 145.28 (m), 159.57 (p), 163.42 (k), 170.98 (n), 171.12 (T1), 172.43 (P1), 172.97 (i) 173.22 (K1), 173.41 (R1), 174.21 (V1); open in new tab
  5. 2.2.2.6. Compound MPA-Arg(NO2)-Pro-Lys(Leu)-Thr-OMe 3m: Product 3m was obtained with yield 91% as white powder. open in new tab
  6. MPA-RT-Leu 3m: 1 HNMR (400 MHz, DMSO-d6) δ ppm: 0.77 (m, 6H, δ -L5, ε-L6), 1.014 (m, 3H, γ-T4), 1.22 (m, 10H, γ-K4, β-L3b, β-L3a, δ-K5, β-R3b, β-K3b, γ-R4), 1.59 (m, 3H, β-K3a, β-R3a, γ-L4b), 1.69 (s, 3H, f), 1.79 (m, 3H, γ-P4b, β-P3b, γ-L4a), 1.98 (m, 1H, γ-P4a), 2.05 (s, 3H, e), 2.11 (m, 4H, g, h), 3.03 (m, 2H, ε-K6), 3.11 (m, 2H, δ-R5), 3.25 (d, 2H, J=6.2
  7. Hz, d), 3.32 (m, 1H, α-L2), 3.52 (m, 2H, δ-P5b, δ-P5a), 3.60 (s, 3H, COOMe), 3.67 (s, 3H, c), 4.09 (m, 1H, β-T3), 4.24 (m, 2H, α-T2, α-K2), 4.32 (m, 1H, α-P2), 4.43 (m, 1H, α-R2), 5.10 (t, J=6.6 Hz, 1H, a), 5.21 (s, 2H, b), 7.82 (d, J=8.4 Hz, 1H, α-TNH), 8.08 (m, 2H, α-RNH, α-KNH), 8.12 (m, 1H, ε-KNH);
  8. CNMR (400 MHz,CD3OD-d4) δ ppm: 11.49 (e), 16.44 (f), 20.48 (γ-T4), 23.39 (d/γ-K4), 23.35 (δ-L5), 24.41 (γ-L4), 24.87 (γ-P4/γ-R4), 28.83 (β-R3), 29.17 (δ-K5), 29.52 (β-P3), 31.81 (β-K3), 34.25 (h), 35.48 (g), 38.81 (ε-K6), 40.54 (δ-R5) 43.17 (β-L3), 47.18 (δ-P5), 50.26 (α-R2), 52.28 (OMe), 52.74 (α-L2) 52.85 (α-K2), 58.13 (α-T2), 59.58 (α-P2), 60.95 (c), 66.76 (β-T3), 68.98 (b), 122.94 (o/a), 146.11 (m), 159.72 (p), 162.98 (k), 170.48 (n), 171.43 (T1), 171.82 (P1), 172.14 (i) 172.59 (K1); open in new tab
  9. 2.2.2.7. Compound MPA-Arg(NO2)-Pro-Lys(Ile)-Thr-OMe 3n: Product 3n was obtained with yield 84% as white powder. open in new tab
  10. MPA-RT-Ile 3n: 1 HNMR (400 MHz, DMSO-d6) δ ppm: 0.806 (m, 6H, δ-I5, ε-I6), 1.041 (d, J=6.3 Hz, 3H, γ-T4), 1.078 (m, 2H, γ-I4), 1.273 (m, 2H, γ-K4), 1.393 (m, 3H, δ-K5, β-R3b), 1.459 (m, 3H, β-K3b, γ-R4), 1.634 (m, 3H, β-K3a, β-R3a, β-I3), 1.727 (s, 3H, f), 1.804 (m, 2H, γ-P4b, β-P3b), 1.894 (m, 2H, γ-P4a, β-T3), 1.995 (m, 1H, β-P3a), 2.071 (s, 3H, e), 2.129 (m, 4H, g, h), 3.007 (m, 5H, α-I2, ε-K6, δ-R5), 3.272 (d, J=6.5 Hz, 2H, d), 3.515 (m, 1H, δ-P5b), 3.617 (m, 1H, δ-P5a), 3.625 (s, 3H, COOMe), 3.687 (s, 3H, c), 4.103 (m, 1H, β-T3), 4.25 (m, 2H, α-T2, α-K2), 4.339 (m, 1H, α-P2), 4.444 (m, 1H, α-R2), 5.142 (t, J=6.7 Hz, 1H, a), 5.228 (s, 2H, b), 7.817 (d, J=8.2 Hz, 1H, α-TNH), 8.018 (m, 3H, α-RNH, α-KNH, ε-KNH);
  11. CNMR (400 MHz,CD3OD-d4) δ ppm: 10.07 (e), 10.45 (δ-I5), 14.45 (ε-I6), 14.93 (f), 18.97 (γ-T4), 22.29 (d), 24.22 (γ-I4), 24.66 (γ-K4), 28.48 (γ-P4), 29.22 (γ-R4), 31.04 (β-R3), 33.97 (δ-K5), 35.08 (β-P3), 38.24 (β-I3), 38.69 (β-K3), 40.53 (h), 42.16 (g), 46.894 (ε-K6), 48.357 (δ-R5) 50.76 (δ-P5), 51.47 (α-R2), 53.35 (OMe), 56.93 (α-T2), 57.81 (α-I2), 59.08 (α-K2), 60.11 (α-P2), 60.18 (c), 67.02 (β-T3), 69.39 (b), 106.35 (o), 116.2 (l), 122.32 (r), 123.09 (a), 133.66 (j), 145.29 (m), 159.56 (p), 163.42 (k), 170.99 (n), 171.14 (T1), 172.45 (P1), 172.97 (i) 173.23 (K1), 173.42 (R1), 174.21 (I1); open in new tab
  12. R. Bentley, Mycophenolic acid: a one hundred year odyssey from antibiotic to immuno- suppressant, Chem. Rev. 100 (2000) 3801-3826. open in new tab
  13. G. Cholewiński, M. Małachowska, K. Dzierzbicka, The chemistry of mycophenolic acid - synthesis and modifications towards desired biological activity, Curr. Med. Chem. 17 (2010) 1926-1941. open in new tab
  14. L. Hedstrom, IMP Dehydrogenase: structure, mechanism and inhibition, Chem. Rev. 109 (2009) 2903-2928. open in new tab
  15. G. Cholewiński, D. Iwaszkiewicz-Grześ, M. Prejs, A. Głowacka, K. Dzierzbicka, Synthesis of the inosine 5'-monophosphate dehydrogenase (IMPDH) Inhibitors, J. Enzyme Inhib. Med. Chem. 30 (2015) 550-563. open in new tab
  16. M.D. Sintchak, M.A. Fleming, O. Futer, S.A. Raybuck, S.P. Chambers, P.R. Caron, M.A. open in new tab
  17. Murcko, K.P. Wilson, Structure and Mechanism of Inosine Monophosphate Dehydrogenase in Complex with the Immunosuppressant Mycophenolic Acid, Cell 85 (1996) 921-930.
  18. S. Mitsuhashi, J. Takenaka, K. Iwamori, N. Nakajima, M. Ubukata, Structure-activity rela- tionships for inhibition of inosine monophosphate dehydrogenase and differentiation induction of K562 cells among the mycophenolic acid derivatives, Bioorg. Med. Chem. 18 (2010) open in new tab
  19. G. Lai, W.K. Anderson, Synthesis of Novel Indole Analogues of Mycophenolic Acid as Potential Antineoplastic Agents, Tetrahedron 56, (2000) 2583-2590. open in new tab
  20. L. Chen, D. Wilson, H.N. Jayaram, K.W. Pankiewicz, Dual inhibitors of IMP-dehydrogen- ase and histone deacetylases for cancer treatment, J. Med. Chem. 50 (2007) 6685-6691. open in new tab
  21. Ch.P. Shah, P.S. Kharkar, Newer human inosine 5′-monophosphatedehydrogenase 2 (hIMPDH2) inhibitors as potential anticancer agents, J. Enzyme Inhib. Med. Chem. 33 (2018), 972-977.
  22. Ch.P. Shah, P.S. Kharkar, Discovery of novel human inosine 5′-monophosphate dehydro- genase 2 (hIMPDH2) inhibitors as potential anticancer agents, Eur. J.Med. Chem. 158 (2018) 286-301.
  23. K. Felczak, R. Vince, K.W. Pankiewicz, NAD-based inhibitors with anticancer potential, Bioorg. Med. Chem. Lett. 24 (2014) 332-336. open in new tab
  24. G. Cholewiński, D. Iwaszkiewicz-Grześ, P. Trzonkowski, K. Dzierzbicka, Synthesis and biological activity of ester derivatives of mycophenolic acid and acridines/acridones as poten- tial immunosuppressive agents, J. Enzyme Inhib. Med. Chem. 31 (2016) 974-982. open in new tab
  25. A. Siebert, M. Prejs, G. Cholewiński, K. Dzierzbicka, New analogues of mycophenolic acid, Mini Rev. Med. Chem. 17 (2017) 734-745. open in new tab
  26. K. Sunohara, S. Mitsuhashi, K. Shigetomi, M. Ubukata, Discovery of N-(2,3,5-tri- azoyl)mycophenolic amide and mycophenolic epoxyketone as novel inhibitors of human IMPDH, Bioorg. Med. Chem. Lett. 23 (2013) 5140-5144. open in new tab
  27. W.J. Watkins, J.M. Chen, A. Cho, L. Chong, N. Collins, M. Fardis, W. Huang, M. Hung, T. Kirschberg, W.A. Lee, X. Liu, W. Thomas, X. Xu, A. Zeynalzadegan, J. Zhang, Phosphonic acid-containing analogues of mycophenolic acid as inhibitors of IMPDH, Bioorg. Med. Chem. Lett. 16 (2006) 3479-3483. open in new tab
  28. N. Yang, Q. Wang, W. Wang, J. Wang, F. Li, S. Tan, M. Cheng, The synthesis and in vitro immunosuppressive evaluation of novel isobenzofuran derivatives, Bioorg. Med. Chem. Lett. 22 (2012) 53-56. open in new tab
  29. L. Guazelli, F. D'Andrea, F. Giorgelli, G. Catelani, A. Panattoni, A. Luvisi, Synthesis of PAMAM Dendrimers Loaded with Mycophenolic Acid to Be Studied as New Potential Immu- nosuppressants. J. Chem. (2015). http://dx.doi.org/10.1155/2015/263072. open in new tab
  30. P.H. Nelson, S.F. Carr, B.H. Devens, E.M. Eugui, F.Franco, C. Gonzalez, R.C. Havley, D.G. Loughhead, D.J. Milan, E. Papp, J.W. Patterson, S. Rouhafza, E.B. Sjogren, D.B. Smith, R.A. Stephenson, F.X. Talamas, A-N. Waltos, R.J. Weikert, J.C. Wu Structure-Activity Rela- tionships for Inhibition of Inosine Monophosphate Dehydrogenase by Nuclear Variants of My- cophenolic Acid, J. Med. Chem. 39 (1996) 4181-4196. open in new tab
  31. A. Siebert, G. Cholewiński, D. Garwolińska, A. Olejnik, J. Rachoń, J. Chojnacki, The synthesis and structure of a potential immunosuppressant: N-mycophenoylmalonic acid dime- thyl ester, J. Mol. Struct. 1151 (2018) 218-222. open in new tab
  32. D. Iwaszkiewicz-Grześ, G. Cholewiński, A. Kot-Wasik, P. Trzonkowski P., K. open in new tab
  33. Dzierzbicka, Synthesis and biological activity of mycophenolic acid-amino acid derivatives, Eur. J. Med. Chem. 69 (2013) 863-871.
  34. M.D. Sintchak, E. Nimmesgern, The structure of inosine 5'-monophosphate dehydrogen- ase and the design of novel inhibitors, Immunopharmacol. 47 (2000) 163-184. open in new tab
  35. K. Dzierzbicka, Synthesis of conjugates of muramyl dipeptide and nor-muramyldipeptide with retro-tuftsin (Arg-Pro-Lys-ThrOMe) as potential immunostimulants, Pol. J. Chem. 78 (2004) 409-416.
  36. K. Dzierzbicka, P. Sowiński, A.M. Kołodziejczyk, Synthesis of analogues of anthraqui- nones linked to tuftsin or retro-tuftsin residues as potential topoisomerase inhibitors, J. Pept. Sci. 12 (2006) 670-678. open in new tab
  37. K. Dzierzbicka, A. Wardowska, M. Rogalska, P. Trzonkowski, New conjugates of mu- ramyl dipeptide and nor-muramyl dipeptide linked to tuftsin and retro-tuftsin derivatives sig- nificantly influence their biological activity, Pharmacol. Rep. 64 (2012) 217-223.
  38. A. Siebert, M. Wysocka, B. Krawczyk, G. Cholewiński, J. Rachoń, Synthesis and antimi- crobial activity of amino acid and peptide derivatives of mycophenolic acid, Eur. J. Med. Chem. 143 (2018) 646-655. open in new tab
  39. A. Siebert, M. Gensicka-Kowalewska, G. Cholewiński, K. Dzierzbicka, Tuftsin -Proper- ties and Analogs, Curr. Med. Chem. 24 (2017) 3711-3727. open in new tab
  40. Y. Peng, Y. Dong, R.I. Mahato, Synthesis and Characterization of a Novel Mycophenolic Acid -Quinic Acid Conjugate Serving as Immunosuppressant with Decreased Toxicity, Mol. Pharmaceutics 12 (2015) 4445-4453. open in new tab
  41. H. Wu, J. Pagadala, C.R. Yates, D. Miller, R.I. Mahato, Synthesis and characterization of an anti-apoptotic immunosuppressive compound for improving the outcome of islet transplan- tation, Bioconjugate Chem. 24 (2013) 2036−2044. open in new tab
  42. L. Chen, D.J. Wilson, Y. Xu, C.C. Aldrich, K. Felczak, Y.Y. Sham, K.W. Pankiewicz, Triazole-linked inhibitors of inosine monophosphate dehydrogenase from human and myco- bacterium tuberculosis. J. Med. Chem. 53 (2010) 4768-4778. open in new tab
  43. X. Wang, Y. Lin, Y. Zeng, X. Sun, T. Gong, Z. Zhang, Effects of mycophenolic acid- glucosamine conjugates on the base of kidney targeted drug delivery, Inter. J. Pharma. 456 (2013) 223-234. open in new tab
  44. K.W. Pankiewicz, K.B. Lesiak-Watanabe, K.A. Watanabe, S.E. Patterson, H.N. Jayaram, J.A. Yalowitz, M.D. Miller, M. Seidman, A. Majumdar, G. Prehna, B.M. Goldstein, Novel My- cophenolic Adenine Bis(phosphonate) Analogues As Potential Differentiation Agents against Human Leukemia, J. Med. Chem. 45 (2002) 703-712. open in new tab
  45. M. Prejs, G. Cholewiński, P. Trzonkowski, A. Kot-Wasik, K. Dzierzbicka, Synthesis and antiproliferative activity of new mycophenolic acid conjugates with adenosine derivatives, J. Asian Nat. Prod. Res. 21 (2019) 178-185. open in new tab
Sources of funding:
  • Statutory activity/subsidy
Verified by:
Gdańsk University of Technology

seen 163 times

Recommended for you

Meta Tags