Impact of Tetrazolium Ionic Liquid Thermal Decomposition in Solvothermal Reaction on the Remarkable Photocatalytic Properties of TiO2 Particles - Publication - Bridge of Knowledge

Search

Impact of Tetrazolium Ionic Liquid Thermal Decomposition in Solvothermal Reaction on the Remarkable Photocatalytic Properties of TiO2 Particles

Abstract

Ionic liquids (ILs) could serve as a structuring agent, a solvent, or a source of dopant during solvothermal synthesis of semiconductors particles. To understand the role of IL during formation of TiO2 particles, it is necessary to study the stability of this IL in solvothermal synthesis conditions, as well as studying the surface properties of formed TiO2 particles. In view of this, the effect of the 2,3,5-triphenyltetrazolium chloride IL ([TPTZ][Cl]) thermal decomposition during the solvothermal reaction and IL content in the reaction system on photoactivity of TiO2 microparticles has been systematically investigated. The samples obtained by using [TPTZ][Cl] exhibited remarkable photocatalytic properties in phenol degradation reaction under visible light. HPLC analysis of the solvothermal reaction medium and X-ray photoelectron spectroscopy (XPS) analysis of TiO2 particles revealed that [TPTZ][Cl] was decomposed completely and was incorporated into the TiO2 lattice. Generally, increasing the reaction time (1, 4, 12, and 24 h) promoted the TiO2 microspheres formation, as well as raising the visible light-induced photocatalytic activity of the photocatalysts. Longer reaction time was also accompanied by an increase in the efficiency of 2,3,5-triphenyltetrazolium chloride decomposition. The properties of the photocatalysts were investigated by means of UV-VIS diffuse reflectance spectroscopy (DRS), BET surface area measurements, scanning electron microscopy (SEM), X-ray powder diffraction (XRD) analysis, and XPS.

Citations

  • 5

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Authors (8)

Cite as

Full text

download paper
downloaded 34 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Nanomaterials
ISSN: 2079-4991
Language:
English
Publication year:
2019
Bibliographic description:
Paszkiewicz-Gawron M., Gołąbiewska A., Pancielejko A., Lisowski W., Zwara J., Paszkiewicz M., Zaleska-Medynska A., Łuczak J.: Impact of Tetrazolium Ionic Liquid Thermal Decomposition in Solvothermal Reaction on the Remarkable Photocatalytic Properties of TiO2 Particles// Nanomaterials. -, iss. 9 (2019), s.744-
DOI:
Digital Object Identifier (open in new tab) 10.3390/nano9050744
Bibliography: test
  1. Izgorodina, E.I.; Seeger, Z.L.; Scarborough, D.L.A.; Tan, S.Y.S. Quantum Chemical Methods for the Prediction of Energetic, Physical, and Spectroscopic Properties of Ionic Liquids. Chem. Rev. 2017, 117, 6696-6754. [CrossRef] open in new tab
  2. Liu, H.; Yu, H. Ionic liquids for electrochemical energy storage devices applications. J. Mater. Sci. Technol. 2019, 35, 674-686. [CrossRef] open in new tab
  3. Egorova, K.S.; Ananikov, V.P. Fundamental importance of ionic interactions in the liquid phase: A review of recent studies of ionic liquids in biomedical and pharmaceutical applications. J. Mol. Liq. 2018, 272, 271-300. [CrossRef] open in new tab
  4. Mahamat Nor, S.B.; Woi, P.M.; Ng, S.H. Characterisation of ionic liquids nanoemulsion loaded with piroxicam for drug delivery system. J. Mol. Liq. 2017, 234, 30-39. [CrossRef] open in new tab
  5. Cognigni, A.; Kampichler, S.; Bica, K. Surface-active ionic liquids in catalysis: Impact of structure and concentration on the aerobic oxidation of octanol in water. J. Colloid Interf. Sci. 2017, 492, 136-145. [CrossRef] open in new tab
  6. Łuczak, J.; Paszkiewicz, M.; Krukowska, A.; Malankowska, A.; Zaleska-Medynska, A. Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis. Adv. Colloid Interface Sci. 2016, 227, 1-52. [CrossRef] [PubMed] open in new tab
  7. Nanomaterials 2019, 9, 744 open in new tab
  8. Łuczak, J.; Paszkiewicz-Gawron, M.; Długokęcka, M.; Lisowski, W.; Grabowska, E.; Makurat, S.; Rak, J.; Zaleska-Medynska, A. Visible light photocatalytic activity of ionic liquid-TiO 2 spheres: Effect of the ionic liquid's anion structure. ChemCatChem 2017, 9, 4377-4388. [CrossRef] open in new tab
  9. Paszkiewicz, M.; Łuczak, J.; Lisowski, W.; Patyk, P.; Zaleska-Medynska, A. The ILs-assisted solvothermal synthesis of TiO 2 spheres: The effect of ionic liquids on morphology and photoactivity of TiO 2 . Appl. Catal. B-Environ. 2016, 184, 223-237. [CrossRef] open in new tab
  10. Nakata, K.; Fujishima, A. TiO 2 photocatalysis: Design and applications. J. Photochem. Photobiol. C 2012, 13, 169-189. [CrossRef] open in new tab
  11. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO 2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919-9986. [CrossRef] open in new tab
  12. Linsebigler, A.L.; Lu, G.; Yates, J.T., Jr. Photocatalysis on TiO 2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735-758. [CrossRef] open in new tab
  13. Yun, E.-T.; Yoo, H.-Y.; Kim, W.; Kim, H.-E.; Kang, G.; Lee, H.; Lee, S.; Park, T.; Lee, C.; Kim, J.-H.; et al. Visible-light-induced activation of periodate that mimics dye-sensitization of TiO 2 : Simultaneous decolorization of dyes and production of oxidizing radicals. Appl. Catal. B-Environ. 2017, 203, 475-484. [CrossRef] open in new tab
  14. Huang, F.; Yan, A.; Zhao, H. Influences of Doping on Photocatalytic Properties of TiO 2 Photocatalyst. In Semiconductor Photocatalysis-Materials, Mechanisms and Applications; open in new tab
  15. Cao, W., Ed.; InTech: Rijeka, Croatia, 2016; Chapter 02.
  16. Gołąbiewska, A.; Zielińska-Jurek, A.; Zaleska, A. Characterization of TiO 2 modified with bimetallic Ag/Au nanoparticles obtained in microemulsion system. J. Adv. Oxid. Technol. 2012, 15, 71-77. open in new tab
  17. Wang, Y.; Tao, J.; Wang, X.; Wang, Z.; Zhang, M.; He, G.; Sun, Z. A unique Cu 2 O/TiO 2 nanocomposite with enhanced photocatalytic performance under visible light irradiation. Ceram. Int. 2017, 43, 4866-4872. [CrossRef] open in new tab
  18. Chen, Y.; Li, W.; Wang, J.; Gan, Y.; Liu, L.; Ju, M. Microwave-assisted ionic liquid synthesis of Ti3+ self-doped TiO 2 hollow nanocrystals with enhanced visible-light photoactivity. Appl. Catal. B-Environ. 2016, 191, 94-105. [CrossRef] open in new tab
  19. Ramanathan, R.; Bansal, V. Ionic liquid mediated synthesis of nitrogen, carbon and fluorine-codoped rutile TiO 2 nanorods for improved UV and visible light photocatalysis. RSC Adv. 2015, 5, 1424-1429. [CrossRef] open in new tab
  20. Yu, J.; Li, Q.; Liu, S.; Jaroniec, M. Ionic-Liquid-Assisted Synthesis of Uniform Fluorinated B/C-Codoped TiO 2 Nanocrystals and Their Enhanced Visible-Light Photocatalytic Activity. Chem.-Eur. J. 2013, 19, 2433-2441. [CrossRef] open in new tab
  21. Mazierski, P.; Łuczak, J.; Lisowski, W.; Winiarski, M.J.; Klimczuk, T.; Zaleska-Medynska, A. The ILs-assisted electrochemical synthesis of TiO 2 nanotubes: The effect of ionic liquids on morphology and photoactivity. Appl. Catal. B-Environ. 2017, 214, 100-113. [CrossRef] open in new tab
  22. Li, F.-T.; Wang, X.-J.; Zhao, Y.; Liu, J.-X.; Hao, Y.-J.; Liu, R.-H.; Zhao, D.-S. Ionic-liquid-assisted synthesis of high-visible-light-activated N-B-F-tri-doped mesoporous TiO 2 via a microwave route. Appl. Catal. B-Environ. 2014, 144, 442-453. [CrossRef] open in new tab
  23. Hu, S.; Wang, A.; Li, X.; Wang, Y.; Löwe, H. Hydrothermal Synthesis of Ionic Liquid [Bmim] OH-Modified TiO 2 Nanoparticles with Enhanced Photocatalytic Activity under Visible Light. Chem.-Asian J. 2010, 5, 1171-1177. [CrossRef] open in new tab
  24. Paszkiewicz-Gawron, M.; Długokȩcka, M.; Lisowski, W.; Cristina Paganini, M.; Giamello, E.; Klimczuk, T.; Paszkiewicz, M.; Grabowska, E.; Zaleska-Medynska, A.; Łuczak, J. Dependence between Ionic Liquid Structure and Mechanism of Visible-Light-Induced Activity of TiO 2 Obtained by Ionic-Liquid-Assisted Solvothermal Synthesis. ACS Sustain. Chem. Eng. 2018, 6, 3927-3937. [CrossRef] open in new tab
  25. Gołąbiewska, A.; Paszkiewicz-Gawron, M.; Sadzińska, A.; Lisowski, W.; Grabowska, E.; Zaleska-Medynska, A.; Łuczak, J. Fabrication and photoactivity of ionic liquid-TiO 2 structures for efficient visible-light-induced photocatalyticdecomposition of organic pollutants in aqueous phase. Beilstein J. Nanotechnol. 2018, 9, 580-590. [CrossRef] open in new tab
  26. Deng, F.; Luo, X.; Li, K.; Tu, X.; Luo, S.; Yang, L.; Zhou, N.; Shu, H. The effect of vinyl-containing ionic liquid on the photocatalytic activity of iron-doped TiO 2 . J. Mol. Catal. A-Chem. 2013, 366, 222-227. [CrossRef] open in new tab
  27. Liu, H.; Wang, M.; Wang, Y.; Liang, Y.; Cao, W.; Su, Y. Ionic liquid-templated synthesis of mesoporous CeO 2 -TiO 2 nanoparticles and their enhanced photocatalytic activities under UV or visible light. J. Photochem. Photobiol. A-Chem. 2011, 223, 157-164. [CrossRef] open in new tab
  28. Liu, S.-H.; Syu, H.-R. High visible-light photocatalytic hydrogen evolution of C,N-codoped mesoporous TiO 2 nanoparticles prepared via an ionic-liquid-template approach. Int. J. Hydrog. Energy 2013, 38, 13856-13865. [CrossRef] open in new tab
  29. Gołąbiewska, A.; Checa-Suárez, M.; Paszkiewicz-Gawron, M.; Lisowski, W.; Raczuk, E.; Klimczuk, T.; Polkowska,Ż.; Grabowska, E.; Zaleska-Medynska, A.; Łuczak, J. Highly Active TiO 2 Microspheres Formation in the Presence of Ethylammonium Nitrate Ionic Liquid. Catalysts 2018, 8, 279. [CrossRef] open in new tab
  30. Qi, L.; Yu, J.; Jaroniec, M. Enhanced and suppressed effects of ionic liquid on the photocatalytic activity of TiO 2 . Adsorption 2013, 19, 557-561. [CrossRef] open in new tab
  31. Łuczak, J.; Paszkiewicz, M.; Krukowska, A.; Malankowska, A.; Zaleska-Medynska, A. Ionic liquids for nano- and microstructures preparation. Part 1: Properties and multifunctional role. Adv. Colloid Interfac. 2016, 230, 13-28. [CrossRef] open in new tab
  32. Naumkin, A.V.; Kraut-Vass, A.; Gaarenstroom, S.W.; Powell, C.J. NIST X-ray Photoelectron Spectroscopy Database 20, Version 4.1; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2012.
  33. Cong, Y.; Zhang, J.; Chen, F.; Anpo, M. Synthesis and Characterization of Nitrogen-Doped TiO 2 Nanophotocatalyst with High Visible Light Activity. J. Phys. Chem. C 2007, 111, 6976-6982. [CrossRef] open in new tab
  34. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269-271. [CrossRef] open in new tab
  35. Antony, R.P.; Mathews, T.; Panda, K.; Sundaravel, B.; Dash, S.; Tyagi, A. Enhanced field emission properties of electrochemically synthesized self-aligned nitrogen-doped TiO 2 nanotube array thin films. J. Phys. Chem. C 2012, 116, 16740-16746. [CrossRef] open in new tab
  36. Dunnill, C.W.; Parkin, I.P. Nitrogen-doped TiO 2 thin films: Photocatalytic applications for healthcare environments. Dalton Trans. 2011, 40, 1635-1640. [CrossRef] open in new tab
  37. Viswanathan, B.; Krishanmurthy, K.R. Nitrogen Incorporation in TiO 2 : Does It Make a Visible Light Photo-Active Material? Int. J. Photoenergy 2012, 269654. [CrossRef] open in new tab
  38. Jiang, Z.; Kong, L.; Alenazey, F.S.; Qian, Y.; France, L.; Xiao, T.; Edwards, P.P. Enhanced visible-light-driven photocatalytic activity of mesoporous TiO 2−xN xderived from the ethylenediamine-based complex. Nanoscale 2013, 5, 5396-5402. [CrossRef] open in new tab
  39. Hu, S.; Wang, A.; Li, X.; Löwe, H. Hydrothermal synthesis of well-dispersed ultrafine N-doped TiO 2 nanoparticles with enhanced photocatalytic activity under visible light. J. Phys. Chem. Solids 2010, 71, 156-162. [CrossRef] open in new tab
  40. Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Cho, M.H. Nitrogen-doped titanium dioxide (N-doped TiO 2 ) for visible light photocatalysis. New J. Chem. 2016, 146, 199-204. [CrossRef] open in new tab
  41. Di Valentin, C.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Giamello, E. Characterization of Paramagnetic Species in N-Doped TiO 2 Powders by EPR Spectroscopy and DFT Calculations. J. Phys. Chem. B 2005, 109, 11414-11419. [CrossRef] open in new tab
  42. Wang, Y.; Zhu, L.; Ba, N.; Xie, H. Effects of NH 4 F quantity on N-doping level, photodegradation and photocatalytic H 2 production activities of N-doped TiO 2 nanotube array films. Mater. Res. Bull. 2017, 86, 268-276. [CrossRef] open in new tab
  43. Wang, Y.; Feng, C.; Zhang, M.; Yang, J.; Zhang, Z. Enhanced visible light photocatalytic activity of N-doped TiO 2 in relation to single-electron-trapped oxygen vacancy and doped-nitrogen. Appl. Catal. B-Environ. 2010, 100, 84-90. [CrossRef] open in new tab
  44. Wood, P.M. The potential diagram for oxygen at pH 7. Biochem. J. 1988, 253, 287-289. [CrossRef] © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 168 times

Recommended for you

Meta Tags