Impedancyjna diagnostyka katody pracującego ogniwa paliwowego typu PEM" - Publication - Bridge of Knowledge

Search

Impedancyjna diagnostyka katody pracującego ogniwa paliwowego typu PEM"

Abstract

Głównym przedmiotem rozprawy jest ocena aktywności katalitycznej katody w rzeczywistych warunkach pracy ogniwa paliwowego typu PEM zasilanego metanolem. Jak zostało wspomniane we wcześniejszych rozdziałach, proces redukcji tlenu na katodzie jest procesem limitującym wydajność ogniwa paliwowego. Niezbędnym jest zatem bliższe poznanie zachowania katody, co pozwoli na dobór odpowiednich parametrów pracy ogniwa PEM. Wykorzystanie metody DEIS może dać wiele nowych i interesujących informacji, które pozwolą na zrozumienie kinetyki i dynamiki zachodzących w ogniwie procesów. Zaproponowano w tym celu metodę eliminacji obwodów zastępczych wykorzystywanych do opisu zmian katody pracującego ogniwa paliwowego, na podstawie dynamicznych zmian parametrów tych obwodów. Przy pomocy danych uzyskanych klasycznymi metodami elektrochemicznymi nie jest to możliwe.Techniczny obwód zastępczy uwzględniający wpływ warstwy nośnej na proces elektroredukcji tlenu w pracującym ogniwie do tej pory nie został zaproponowany. Poprzez ocenę poszczególnych parametrów obwodu zastępczego możliwym jest określenie optymalnego obciążenia, oraz temperatury, w której katoda ogniwa DMFC posiada najlepsze właściwości. Oprócz tego przeprowadzono badania nad oceną wpływu kwasu mrówkowego na wydajność ogniwa paliwowego DMFC. Podczas zmiany stężenia tej substancji w dostarczanym paliwie do strefy anodowej, możliwym było wyznaczenie charakterystyk zmian parametrów obwodu zastępczego katody oraz wpływu kwasu na moc ogniwa paliwowego.

Cite as

Full text

download paper
downloaded 666 times
Publication version
Accepted or Published Version
License
Copyright (Author(s))

Keywords

Details

Category:
Thesis, nostrification
Type:
praca doktorska pracowników zatrudnionych w PG oraz studentów studium doktoranckiego
Language:
Polish
Publication year:
2017
Bibliography: test
  1. Wprowadzenie .......................................................................................................... 5
  2. Budowa ogniwa DMFC ............................................................................................. 6
  3. Klasyczne elektrochemiczne metody diagnostyki ogniw typu PEM ......................... 11
  4. Krzywe polaryzacyjne ............................................................................................. 11
  5. Pomiar zniekształceń harmonicznych ..................................................................... 15
  6. Charakterystyka ogniwa paliwowego ...................................................................... 18 4.1. Charakterystyka anody ogniwa paliwowego zasilanego metanolem ....................... 21
  7. Cele badawcze ....................................................................................................... 34
  8. Metodyka badawcza ............................................................................................... 36
  9. Część eksperymentalna ......................................................................................... 39
  10. Metodyka doboru obwodu zastępczego dla panujących warunków pracy ogniwa .. 39 7.2. Wpływ zmian temperatury pracy ogniwa na zachowanie katody ............................. 52 open in new tab
  11. Wpływ zmiany stężenia kwasu mrówkowego na wydajność ogniwa paliwowego .... 60 open in new tab
  12. Podsumowanie i wnioski końcowe .......................................................................... 72 open in new tab
  13. Bibliografia ............................................................................................................. 75 open in new tab
  14. Spis dorobku naukowego doktoranta ............................................................................ 85
  15. Rys. 36. Zmiany impedancji anody pod wpływem obciążenia dla roztworów o określonym stosunku objętościowym (0.5 M HCOOH : 0.5 M CH3OH): a) 1:0 b) 2:1 c) 1:1 d) 1:2 e) 0:1.
  16. A. Vlysidis, M. Binns, C. Webb, C. Theodoropoulos, Glycerol utilisation for the production of chemicals: Conversion to succinic acid, a combined experimental and computational study, Biochem. Eng. J. 58-59 (2011) 1-11. doi:10.1016/j.bej.2011.07.004. open in new tab
  17. J. Twidell, T. Weir, No Title, in: Renew. Energy Resour., E&FN SPON. London University Press Cambridge, 1996.
  18. L. Carrette, K.A. Friedrich, U. Stimming, Fuel Cells: Principles, Types, Fuels, and Applications , ChemPhysChem. 1 (2000) 162-193. doi:10.1002/1439-7641(20001215)1:4<162::AID- open in new tab
  19. M. Winter, R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev. 104 (2004) 4245-4270. doi:10.1021/cr020730k. open in new tab
  20. F. Barbir, PEM Fuel Cells, in: N. Sammes (Ed.), Fuel Cell Technol. Reach. Towar. Commer., Springer London, London, 2006: pp. 27-51. doi:10.1007/1-84628-207-1_2. open in new tab
  21. J. Larminie, A. Dicks, J. Larminie, A. Dicks, Proton Exchange Membrane Fuel Cells, in: Fuel Cell Syst. Explain., John Wiley & Sons, Ltd,., 2003: pp. 67-119. doi:10.1002/9781118878330.ch4. open in new tab
  22. M. Paidar, V. Fateev, K. Bouzek, Membrane electrolysis-History, current status and perspective, Electrochim. Acta. 209 (2016) 737-756. doi:10.1016/j.electacta.2016.05.209. open in new tab
  23. S. Gottesfeld, T.A. Zawodzinski, Polymer Electrolyte Fuel Cells, in: Adv. Electrochem. Sci. Eng., Wiley-VCH Verlag GmbH, 1997: pp. 195-301. doi:10.1002/9783527616794.ch4. open in new tab
  24. A. Havranek, K. Klafki, K. Wippermann, The influence of the catalyst loading and the ionomer content on the performance of DMFC anodes, in: 2001. http://juser.fz-juelich.de/record/27298. open in new tab
  25. X. Xue, C. Bock, L. Birry, B.R. MacDougall, The Influence of Pt Loading, Support and Nafion Content on the Performance of Direct Methanol Fuel Cells: Examined on the Example of the Cathode, Fuel Cells. 11 (2011) 286-300. doi:10.1002/fuce.200900204. open in new tab
  26. M.C. Denis, M. Lefevre, D. Guay, J.P. Dodelet, Pt-Ru catalysts prepared by high energy ball-milling for PEMFC and DMFC: Influence of the synthesis conditions, Electrochim. Acta. 53 (2008) 5142- 5154. doi:10.1016/j.electacta.2008.02.045. open in new tab
  27. W. Zheng, A. Suominen, A. Tuominen, Discussion on the Challenges of DMFC Catalyst Loading Process for Mass Production, Energy Procedia. 28 (2012) 78-87. doi:10.1016/j.egypro.2012.08.042. open in new tab
  28. A.A. Balandin, Modern State of the Multiplet Theor of Heterogeneous Catalysis, in: 1969: pp. 1-210. doi:10.1016/S0360-0564(08)60029-2. open in new tab
  29. O.T. Holton, J.W. Stevenson, The Role of Platinum in Proton Exchange Membrane Fuel Cells, Platin. Met. Rev. 57 (2013). open in new tab
  30. A. El-kharouf, T.J. Mason, D.J.L. Brett, B.G. Pollet, Ex-situ characterisation of gas diffusion layers for proton exchange membrane fuel cells, J. Power Sources. 218 (2012) 393-404. doi:10.1016/j.jpowsour.2012.06.099. 76 open in new tab
  31. M. Bello, S.M.J. Zaidi, A. Al-Ahmed, S. Basu, D.-H. Park, K.S. Lakhi, A. Vinu, Pt-Ru nanoparticles functionalized mesoporous carbon nitride with tunable pore diameters for DMFC applications, Microporous Mesoporous Mater. 252 (2017) 50-58. doi:10.1016/j.micromeso.2017.06.021. open in new tab
  32. P.A. Garcia-Salaberri, M. Vera, On the effects of assembly compression on the performance of liquid-feed DMFCs under methanol-limiting conditions: A 2D numerical study, J. Power Sources. 285 (2015) 543-558. doi:10.1016/j.jpowsour.2015.02.112. open in new tab
  33. R.K. Mallick, S.B. Thombre, Performance of passive DMFC with expanded metal mesh current collectors, Electrochim. Acta. 243 (2017) 299-309. doi:10.1016/j.electacta.2017.04.113. open in new tab
  34. R. Baronia, J. Goel, S. Tiwari, P. Singh, D. Singh, S.P. Singh, S.K. Singhal, Efficient electro-oxidation of methanol using PtCo nanocatalysts supported reduced graphene oxide matrix as anode for DMFC, Int. J. Hydrogen Energy. 42 (2017) 10238-10247. doi:10.1016/j.ijhydene.2017.03.011. open in new tab
  35. B.C. Ong, S.K. Kamarudin, M.S. Masdar, U.A. Hasran, Applications of graphene nano-sheets as anode diffusion layers in passive direct methanol fuel cells (DMFC), Int. J. Hydrogen Energy. 42 (2017) 9252-9261. doi:10.1016/j.ijhydene.2016.03.094. open in new tab
  36. A. Ozden, M. Ercelik, D. Ouellette, C.O. Colpan, H. Ganjehsarabi, F. Hamdullahpur, Designing, modeling and performance investigation of bio-inspired flow field based DMFCs, Int. J. Hydrogen Energy. (2017). doi:10.1016/j.ijhydene.2017.01.007. open in new tab
  37. N.S. Vasile, A.H.A. Monteverde Videla, S. Specchia, Effects of the current density distribution on a single-cell DMFC by tuning the anode catalyst in layers of gradual loadings: Modelling and experimental approach, Chem. Eng. J. 322 (2017) 722-741. doi:10.1016/j.cej.2017.04.060. open in new tab
  38. J. Ko, K. Kang, S. Park, W.-G. Kim, S.-H. Lee, H. Ju, Effect of design of multilayer electrodes in direct methanol fuel cells (DMFCs), Int. J. Hydrogen Energy. 39 (2014) 1571-1579. doi:10.1016/j.ijhydene.2013.04.069. open in new tab
  39. T. Mennola, Measurement of ohmic voltage losses in individual cells of a PEMFC stack, J. Power Sources. 112 (2002) 261-272. doi:10.1016/S0378-7753(02)00391-9. open in new tab
  40. P. Hartmann, D. Gerteisen, Local degradation analysis of a real long-term operated DMFC stack MEA, J. Power Sources. 219 (2012) 147-154. doi:10.1016/j.jpowsour.2012.07.048. open in new tab
  41. D. Gerteisen, Transient and steady-state analysis of catalyst poisoning and mixed potential formation in direct methanol fuel cells, J. Power Sources. 195 (2010) 6719-6731. doi:10.1016/j.jpowsour.2010.04.004. open in new tab
  42. M. LIU, J. WANG, S. WANG, X. XIE, T. ZHOU, V.K. Mathur, On-line Measurement for Ohmic Resistance in Direct Methanol Fuel Cell by Current Interruption Method, Chinese J. Chem. Eng. 18 (2010) 843-847. doi:10.1016/S1004-9541(09)60137-3. open in new tab
  43. D. Chakraborty, I. Chorkendorff, T. Johannessen, Metamorphosis of the mixed phase PtRu anode catalyst for direct methanol fuel cells after exposure of methanol: In situ and ex situ characterizations, J. Power Sources. 173 (2007) 110-120. doi:10.1016/j.jpowsour.2007.04.057. open in new tab
  44. R. Escudero-Cid, P. Hernandez-Fernandez, J.C. Perez-Flores, S. Rojas, S. Garcia-Rodriguez, E. open in new tab
  45. Fatis, P. Ocin, Analysis of performance losses of direct methanol fuel cell with methanol tolerant open in new tab
  46. PtCoRu/C cathode electrode, Int. J. Hydrogen Energy. 37 (2012) 7119-7130. 77 doi:10.1016/j.ijhydene.2011.12.158. open in new tab
  47. G. Xu, J.M. LaManna, J.T. Clement, M.M. Mench, Direct measurement of through-plane thermal conductivity of partially saturated fuel cell diffusion media, J. Power Sources. 256 (2014) 212-219. doi:10.1016/j.jpowsour.2014.01.015. open in new tab
  48. A. Santasalo-Aarnio, S. Hietala, T. Rauhala, T. Kallio, In and ex situ characterization of an anion- exchange membrane for alkaline direct methanol fuel cell (ADMFC), J. Power Sources. 196 (2011) 6153-6159. doi:10.1016/j.jpowsour.2011.03.028. open in new tab
  49. G. Liu, Z. Pan, W. Li, K. Yu, G. Xia, Q. Zhao, S. Shi, G. Hu, C. Xiao, Z. Wei, The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation, Appl. Surf. Sci. 410 (2017) 70-78. doi:10.1016/j.apsusc.2017.03.075. open in new tab
  50. X. Mu, Z. Xu, Y. Xie, H. Mi, J. Ma, Pt nanoparticles supported on Co embedded coal-based carbon nanofiber for enhanced electrocatalytic activity towards methanol electro-oxidation, J. Alloys Compd. 711 (2017) 374-380. doi:10.1016/j.jallcom.2017.04.008. open in new tab
  51. F. Alcaide, G. Álvarez, P.L. Cabot, R. Genova-Koleva, H.-J. Grande, O. Miguel, Effect of the solvent in the catalyst ink preparation on the properties and performance of unsupported PtRu catalyst layers in direct methanol fuel cells, Electrochim. Acta. 231 (2017) 529-538. doi:10.1016/j.electacta.2017.02.127. open in new tab
  52. C.Y. Du, T.S. Zhao, W.W. Yang, Effect of methanol crossover on the cathode behavior of a DMFC: doi:10.1016/j.electacta.2012.02.018. open in new tab
  53. Q. Mao, U. Krewer, R. Hanke-Rauschenbach, Total harmonic distortion analysis for direct methanol fuel cell anode, Electrochem. Commun. 12 (2010) 1517-1519. doi:10.1016/j.elecom.2010.08.022. open in new tab
  54. E. Ramschak, V. Peinecke, P. Prenninger, T. Schaffer, V. Hacker, Detection of fuel cell critical status by stack voltage analysis, J. Power Sources. 157 (2006) 837-840. doi:10.1016/j.jpowsour.2006.01.009. open in new tab
  55. S. Thomas, S.C. Lee, A.K. Sahu, S. Park, Online health monitoring of a fuel cell using total harmonic distortion analysis, Int. J. Hydrogen Energy. 39 (2014) 4558-4565. doi:10.1016/j.ijhydene.2013.12.180. open in new tab
  56. M. Boinet, D. Marlot, J.C. Lenain, S. Maximovitch, F. Dalard, R.P. Nogueira, First results from coupled acousto-ultrasonics and electrochemical noise techniques applied to gas evolving electrodes, Electrochem. Commun. 9 (2007) 2174-2178. doi:10.1016/j.elecom.2007.05.026. open in new tab
  57. F. Huet, R.P. Nogueira, P. Lailler, L. Torcheux, Investigation of the high-frequency resistance of a lead-acid battery, J. Power Sources. 158 (2006) 1012-1018. doi:10.1016/j.jpowsour.2005.11.026. open in new tab
  58. B. Legros, P.-X. Thivel, Y. Bultel, R.P. Nogueira, First results on PEMFC diagnosis by electrochemical noise, Electrochem. Commun. 13 (2011) 1514-1516. doi:10.1016/j.elecom.2011.10.007. open in new tab
  59. E.S. Denisov, Y.K. Evdokimov, S. Martemianov, A. Thomas, N. Adiutantov, Electrochemical Noise as a Diagnostic Tool for PEMFC, Fuel Cells. 17 (2017) 225-237. doi:10.1002/fuce.201600077. open in new tab
  60. K.T. Koshekov, Y.N. Klikushin, V.Y. Kobenko, Y.K. Evdokimov, A. V Demyanenko, Fuel Cell Diagnostics Using Identification Measurement Theory, J. Fuel Cell Sci. Technol. 11 (2014) 51003- 51009. http://dx.doi.org/10.1115/1.4027395. open in new tab
  61. T. V Nguyen, R.E. White, A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells, J. Electrochem. Soc. . 140 (1993) 2178-2186. doi:10.1149/1.2220792. open in new tab
  62. T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, Polymer Electrolyte Fuel Cell Model, J. Electrochem. open in new tab
  63. Soc. . 138 (1991) 2334-2342. doi:10.1149/1.2085971. open in new tab
  64. A. Hamnett, Mechanism and electrocatalysis in the direct methanol fuel cell, Catal. Today. 38 (1997) 445-457. doi:10.1016/S0920-5861(97)00054-0. open in new tab
  65. T. Iwasita, W. Vielstich, On-line mass spectroscopy of volatile products during methanol oxidation at platinum in acid solutions, J. Electroanal. Chem. Interfacial Electrochem. 201 (1986) 403-408. doi:10.1016/0022-0728(86)80064-X. open in new tab
  66. C.L. Childers, H. Huang, C. Korzeniewski, Formaldehyde Yields from Methanol Electrochemical Oxidation on Carbon-Supported Platinum Catalysts, Langmuir. 15 (1999) 786-789. doi:10.1021/la980798o. open in new tab
  67. S. Sriramulu, T.D. Jarvi, E.M. Stuve, A kinetic analysis of distinct reaction pathways in methanol electrocatalysis on Pt(111), Electrochim. Acta. 44 (1998) 1127-1134. doi:10.1016/S0013- open in new tab
  68. T.D. Jarvi, S. Sriramulu, E.M. Stuve, Potential Dependence of the Yield of Carbon Dioxide from Electrocatalytic Oxidation of Methanol on Platinum(100), J. Phys. Chem. B. 101 (1997) 3649-3652. doi:10.1021/jp9629248. open in new tab
  69. J.B. Goodenough, A. Hamnett, B.J. Kennedy, R. Manoharan, S.A. Weeks, Methanol oxidation on unsupported and carbon supported Pt + Ru anodes, J. Electroanal. Chem. Interfacial Electrochem. 240 (1988) 133-145. doi:10.1016/0022-0728(88)80318-8. open in new tab
  70. W. Chrzanowski, Badania mechanizmu reakcji elektroutleniania metanolu na elektrodach platynowych i platynowo-rutenowych z uwzględnieniem krystalograficznej orientacji powierzchni elektrody, Wydaw. PG, 2000. https://books.google.pl/books?id=txgtGwAACAAJ.
  71. J.N. Tiwari, R.N. Tiwari, G. Singh, K.S. Kim, Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells, Nano Energy. 2 (2013) 553-578. doi:10.1016/j.nanoen.2013.06.009. open in new tab
  72. N.M. Marković, H.A. Gasteiger, P.N. Ross, X. Jiang, I. Villegas, M.J. Weaver, Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces, Electrochim. Acta. 40 (1995) 91- 98. doi:10.1016/0013-4686(94)00241-R. open in new tab
  73. P. Kolla, A. Smirnova, Methanol oxidation on hybrid catalysts: PtRu/C nanostructures promoted with cerium and titanium oxides, Int. J. Hydrogen Energy. 38 (2013) 15152-15159. doi:10.1016/j.ijhydene.2013.09.096. open in new tab
  74. J. Jiang, A. Kucernak, Nanostructured platinum as an electrocatalyst for the electrooxidation of formic acid, J. Electroanal. Chem. 520 (2002) 64-70. doi:10.1016/S0022-0728(01)00739-2. open in new tab
  75. Z. WANG, K. QIU, Electrocatalytic oxidation of formic acid on platinum nanoparticle electrode deposited on the nichrome substrate, Electrochem. Commun. 8 (2006) 1075-1081. doi:10.1016/j.elecom.2006.04.014. open in new tab
  76. M. Jing, L. Jiang, B. Yi, G. Sun, Comparative study of methanol adsorption and electro-oxidation on carbon-supported platinum in acidic and alkaline electrolytes, J. Electroanal. Chem. 688 (2013) 172- 179. doi:10.1016/j.jelechem.2012.10.028. open in new tab
  77. Z.-B. Wang, Y.-Y. Chu, A.-F. Shao, P.-J. Zuo, G.-P. Yin, Electrochemical impedance studies of electrooxidation of methanol and formic acid on Pt/C catalyst in acid medium, J. Power Sources. 190 (2009) 336-340. doi:10.1016/j.jpowsour.2009.01.008. open in new tab
  78. J. Jiang, A. Kucernak, Solid polymer electrolyte membrane composite microelectrode investigations of fuel cell reactions. II: voltammetric study of methanol oxidation at the nanostructured platinum microelectrode|Nafion® membrane interface, J. Electroanal. Chem. 576 (2005) 223-236. doi:10.1016/j.jelechem.2004.10.019. open in new tab
  79. N. Nakagawa, Y. Xiu, Performance of a direct methanol fuel cell operated at atmospheric pressure, J. Power Sources. 118 (2003) 248-255. doi:10.1016/S0378-7753(03)00090-9. open in new tab
  80. J.C. Amphlett, B.A. Peppley, E. Halliop, A. Sadiq, The effect of anode flow characteristics and temperature on the performance of a direct methanol fuel cell, J. Power Sources. 96 (2001) 204- 213. doi:10.1016/S0378-7753(01)00490-6. open in new tab
  81. J.-P. Diard, N. Glandut, P. Landaud, B. Le Gorrec, C. Montella, A method for determining anode and cathode impedances of a direct methanol fuel cell running on a load, Electrochim. Acta. 48 (2003) 555-562. doi:10.1016/S0013-4686(02)00722-3. open in new tab
  82. S. Uhm, S.T. Chung, J. Lee, Characterization of direct formic acid fuel cells by Impedance Studies: In comparison of direct methanol fuel cells, J. Power Sources. 178 (2008) 34-43. doi:10.1016/j.jpowsour.2007.12.016. open in new tab
  83. A.M. Castro Luna, A. Bonesi, W.E. Triaca, V. Baglio, V. Antonucci, A.S. Aricò, Pt-Fe cathode catalysts to improve the oxygen reduction reaction and methanol tolerance in direct methanol fuel cells, J. Solid State Electrochem. 12 (2008) 643-649. doi:10.1007/s10008-007-0334-0. open in new tab
  84. N. Markovic, P.. Ross, Surface science studies of model fuel cell electrocatalysts, Surf. Sci. Rep. 45 (2002) 117-229. doi:10.1016/S0167-5729(01)00022-X. open in new tab
  85. R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. open in new tab
  86. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K.
  87. Yasuda, K. Kimijima, N. Iwashita, Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation, Chem. Rev. 107 (2007) 3904-3951. doi:10.1021/cr050182l. open in new tab
  88. C. Lo Vecchio, C. Alegre, D. Sebastián, A. Stassi, S.A. Aricò, V. Baglio, Investigation of Supported Pd-Based Electrocatalysts for the Oxygen Reduction Reaction: Performance, Durability and Methanol Tolerance, Mater. . 8 (2015). doi:10.3390/ma8125438. open in new tab
  89. K. Prater, The renaissance of the solid polymer fuel cell, J. Power Sources. 29 (1990) 239-250. doi:10.1016/0378-7753(90)80023-7. open in new tab
  90. I.D. Raistrick, Impedance studies of porous electrodes, Electrochim. Acta. 35 (1990) 1579-1586. doi:10.1016/0013-4686(90)80013-E. open in new tab
  91. T.E. Springer, I.D. Raistrick, Electrical Impedance of a Pore Wall for the Flooded-Agglomerate Model of Porous Gas-Diffusion Electrodes, J. Electrochem. Soc. 136 (1989) 1594-1603. doi:10.1149/1.2096975. open in new tab
  92. M. Ciureanu, R. Roberge, Electrochemical Impedance Study of PEM Fuel Cells. Experimental Diagnostics and Modeling of Air Cathodes, J. Phys. Chem. B. 105 (2001) 3531-3539. doi:10.1021/jp003273p. open in new tab
  93. A.A. Kulikovsky, Analysis of Damjanović kinetics of the oxygen reduction reaction: Stability, polarization curve and impedance spectra, J. Electroanal. Chem. 738 (2015) 130-137. doi:10.1016/j.jelechem.2014.11.014. open in new tab
  94. T.E. Springer, T.A. Zawodzinski, M.S. Wilson, S. Gottesfeld, Characterization of Polymer Electrolyte Fuel Cells Using AC Impedance Spectroscopy, J. Electrochem. Soc. 143 (1996) 587-599. doi:10.1149/1.1836485. open in new tab
  95. V..
  96. Paganin, C.L.. Oliveira, E.. Ticianelli, T.. open in new tab
  97. Springer, E.. Gonzalez, Modelisticinterpretation of the impedance response of a polymer electrolyte fuel cell, Electrochim. Acta. 43 (1998) 3761-3766. doi:10.1016/S0013-4686(98)00135-2. open in new tab
  98. N. Wagner, W. Schnurnberger, B. Müller, M. Lang, Electrochemical impedance spectra of solid- oxide fuel cells and polymer membrane fuel cells, Electrochim. Acta. 43 (1998) 3785-3793. doi:10.1016/S0013-4686(98)00138-8. open in new tab
  99. M.S. Wilson, S. Gottesfeld, Thin-film catalyst layers for polymer electrolyte fuel cell electrodes, J. open in new tab
  100. Appl. Electrochem. 22 (1992) 1-7. doi:10.1007/BF01093004. open in new tab
  101. C. Marr, X. Li, Composition and performance modelling of catalyst layer in a proton exchange membrane fuel cell, J. Power Sources. 77 (1999) 17-27. doi:10.1016/S0378-7753(98)00161-X. open in new tab
  102. M.S. Kondratenko, M.O. Gallyamov, A.R. Khokhlov, Performance of high temperature fuel cells with different types of PBI membranes as analysed by impedance spectroscopy, Int. J. Hydrogen Energy. 37 (2012) 2596-2602. doi:10.1016/j.ijhydene.2011.10.087. open in new tab
  103. M. Markiewicz, C. Zalitis, A. Kucernak, Performance measurements and modelling of the ORR on fuel cell electrocatalysts -the modified double trap model, Electrochim. Acta. 179 (2015) 126-136. doi:10.1016/j.electacta.2015.04.066. open in new tab
  104. T. Schulz, C. Weinmuller, M. Nabavi, D. Poulikakos, Electrochemical impedance spectroscopy analysis of a thin polymer film-based micro-direct methanol fuel cell, J. Power Sources. 195 (2010) 7548-7558. doi:10.1016/j.jpowsour.2010.06.008. open in new tab
  105. S. Cruz-Manzo, R. Chen, A generic electrical circuit for performance analysis of the fuel cell cathode catalyst layer through electrochemical impedance spectroscopy, J. Electroanal. Chem. 694 (2013) 45-55. doi:10.1016/j.jelechem.2013.01.037. open in new tab
  106. M. Javaheri, Investigating the influence of Pd situation (as core or shell) in synthesized catalyst for ORR in PEMFC, Int. J. Hydrogen Energy. 40 (2015) 6661-6671. doi:10.1016/j.ijhydene.2015.03.030. open in new tab
  107. A. Seifitokaldani, O. Savadogo, M. Perrier, Stability and catalytic activity of titanium oxy-nitride catalyst prepared by in-situ urea-based sol-gel method for the oxygen reduction reaction (ORR) in acid medium, Int. J. Hydrogen Energy. 40 (2015) 10427-10438. doi:10.1016/j.ijhydene.2015.06.002. open in new tab
  108. N. Fouquet, C. Doulet, C. Nouillant, G. Dauphin-Tanguy, B. Ould-Bouamama, Model based PEM fuel cell state-of-health monitoring via ac impedance measurements, J. Power Sources. 159 (2006) 905-913. doi:10.1016/j.jpowsour.2005.11.035. open in new tab
  109. M. Boillot, C. Bonnet, N. Jatroudakis, P. Carre, S. Didierjean, F. Lapicque, Effect of Gas Dilution on PEM Fuel Cell Performance and Impedance Response, Fuel Cells. 6 (2006) 31-37. doi:10.1002/fuce.200500101. open in new tab
  110. M.G. Hosseini, P. Zardari, Electrocatalytical study of carbon supported Pt, Ru and bimetallic Pt/Ru nanoparticles for oxygen reduction reaction in alkaline media, Appl. Surf. Sci. 345 (2015) 223-231. doi:10.1016/j.apsusc.2015.03.146. open in new tab
  111. S.M. Rezaei Niya, M. Hoorfar, Process modeling of electrodes in proton exchange membrane fuel cells, J. Electroanal. Chem. 747 (2015) 112-122. doi:10.1016/j.jelechem.2015.04.015. open in new tab
  112. M. Mamlouk, K. Scott, Analysis of high temperature polymer electrolyte membrane fuel cell electrodes using electrochemical impedance spectroscopy, Electrochim. Acta. 56 (2011) 5493- 5512. doi:10.1016/j.electacta.2011.03.056. open in new tab
  113. P. Piela, R. Fields, P. Zelenay, Electrochemical Impedance Spectroscopy for Direct Methanol Fuel Cell Diagnostics, J. Electrochem. Soc. . 153 (2006) A1902-A1913. doi:10.1149/1.2266623. open in new tab
  114. W. Zhang, T. Maruta, S. Shironita, M. Umeda, Anode and cathode degradation in a PEFC single cell investigated by electrochemical impedance spectroscopy, Electrochim. Acta. 131 (2014) 245- 249. doi:10.1016/j.electacta.2014.02.054. open in new tab
  115. Y. Fu, S. Poizeau, A. Bertei, C. Qi, A. Mohanram, J.D. Pietras, M.Z. Bazant, Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells, Electrochim. Acta. 159 (2015) 71-80. doi:10.1016/j.electacta.2015.01.120. open in new tab
  116. Y. Zhu, W.H. Zhu, B.J. Tatarchuk, Performance comparison between high temperature and traditional proton exchange membrane fuel cell stacks using electrochemical impedance spectroscopy, J. Power Sources. 256 (2014) 250-257. doi:10.1016/j.jpowsour.2014.01.049. open in new tab
  117. Y. Wang, G.G. Liu, M. Wang, G.G. Liu, J. Li, X. Wang, Study on stability of self-breathing DFMC with EIS method and three-electrode system, Int. J. Hydrogen Energy. 38 (2013) 9000-9007. doi:10.1016/j.ijhydene.2013.05.033. open in new tab
  118. D. Qu, Investigation of oxygen reduction on activated carbon electrodes in alkaline solution, Carbon N. Y. 45 (2007) 1296-1301. doi:10.1016/j.carbon.2007.01.013. open in new tab
  119. J. Han, H. Liu, Real time measurements of methanol crossover in a DMFC, J. Power Sources. 164 (2007) 166-173. doi:10.1016/j.jpowsour.2006.09.105. open in new tab
  120. K. Scott, W.. Taama, P. Argyropoulos, K. Sundmacher, The impact of mass transport and methanol crossover on the direct methanol fuel cell, J. Power Sources. 83 (1999) 204-216. doi:10.1016/S0378-7753(99)00303-1. open in new tab
  121. H. Dohle, J. Divisek, J. Mergel, H.. Oetjen, C. Zingler, D. Stolten, Recent developments of the measurement of the methanol permeation in a direct methanol fuel cell, J. Power Sources. 105 (2002) 274-282. doi:10.1016/S0378-7753(01)00953-3. open in new tab
  122. P.R. Resnick, W.G. Grot, No Title, 4, 1978.
  123. X. Ren, P. Zelenay, S. Thomas, J. Davey, S. Gottesfeld, Recent advances in direct methanol fuel cells at Los Alamos National Laboratory, J. Power Sources. 86 (2000) 111-116. doi:10.1016/S0378- 7753(99)00407-3. open in new tab
  124. C.Y. Du, T.S. Zhao, C. Xu, Simultaneous oxygen-reduction and methanol-oxidation reactions at the cathode of a DMFC: A model-based electrochemical impedance spectroscopy study, J. Power Sources. 167 (2007) 265-271. doi:10.1016/j.jpowsour.2007.02.048. open in new tab
  125. K.-J. Jeong, C.M. Miesse, J.-H. Choi, J. Lee, J. Han, S.P. Yoon, S.W. Nam, T.-H. Lim, T.G. Lee, Fuel crossover in direct formic acid fuel cells, J. Power Sources. 168 (2007) 119-125. doi:10.1016/j.jpowsour.2007.02.062. open in new tab
  126. T. Tsujiguchi, T. Iwakami, S. Hirano, N. Nakagawa, Water transport characteristics of the passive direct formic acid fuel cell, J. Power Sources. 250 (2014) 266-273. doi:10.1016/j.jpowsour.2013.10.094. open in new tab
  127. X. Ren, S. Gottesfeld, Electro-osmotic Drag of Water in Poly(perfluorosulfonic acid) Membranes, J. Electrochem. Soc. . 148 (2001) A87-A93. doi:10.1149/1.1344521. open in new tab
  128. T.A. Zawodzinski, C. Derouin, S. Radzinski, R.J. Sherman, V.T. Smith, T.E. Springer, S. Gottesfeld, Water Uptake by and Transport Through Nafion® 117 Membranes, J. Electrochem. Soc. . 140 (1993) 1041-1047. doi:10.1149/1.2056194. open in new tab
  129. K. Darowicki, E. Janicka, P. Slepski, Study of Direct Methanol Fuel Cell Process Dynamics Using Dynamic Electrochemical Impedance Spectroscopy, 7 (2012) 12090-12097.
  130. P. Slepski, K. Darowicki, E. Janicka, G. Lentka, A complete impedance analysis of electrochemical cells used as energy sources, J. Solid State Electrochem. 16 (2012) 3539-3549. doi:10.1007/s10008-012-1825-1. open in new tab
  131. L. Gawel, L. Nieuzyla, G. Nawrat, K. Darowicki, P. Slepski, Impedance monitoring of corrosion degradation of plasma electrolytic oxidation coatings (PEO) on magnesium alloy, J. Alloys Compd. (2017). doi:10.1016/j.jallcom.2017.06.120. open in new tab
  132. J. Ryl, L. Gawel, M. Cieslik, H. Gerengi, G. Lentka, P. Slepski, Instantaneous Impedance Analysis of Non-Stationary Corrosion Process: a Case Study of Carbon Steel in 1M HCl, Int. J. Electrochem. open in new tab
  133. Sci. 12 (2017) 6908-6919. doi:10.20964/2017.07.15. open in new tab
  134. K. Darowicki, P. Ślepski, M. Szociński, Application of the dynamic EIS to investigation of transport within organic coatings, Prog. Org. Coatings. 52 (2005) 306-310. doi:10.1016/j.porgcoat.2004.06.007. open in new tab
  135. J. Ryl, A. Zielinski, L. Burczyk, R. Bogdanowicz, T. Ossowski, K. Darowicki, Chemical-Assisted Mechanical Lapping of Thin Boron-Doped Diamond Films: A Fast Route Toward High Electrochemical Performance for Sensing Devices, Electrochim. Acta. 242 (2017) 268-279. doi:10.1016/j.electacta.2017.05.027. open in new tab
  136. B. BOUKAMP, A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems, Solid State Ionics. 20 (1986) 31-44. doi:10.1016/0167-2738(86)90031-7. open in new tab
  137. K. Darowicki, L. Gawel, Impedance Measurement and Selection of Electrochemical Equivalent Circuit of a Working PEM Fuel Cell Cathode, Electrocatalysis. 8 (2017). doi:10.1007/s12678-017- 0363-0. open in new tab
  138. R. de Levie, Advances in electrochemistry and electrochemical engineering Volume 6, Interscience Publishers, New York; London;
  139. Sydney, 1967. open in new tab
  140. E. Janicka, Kompleksowa impedancyjna charakterystyka pracy ogniw paliwowych : rozprawa doktorska, Politechnika Gdańska, 2014. oai:pbc.gda.pl:50482.
  141. SPIS DOROBKU NAUKOWEGO DOKTORANTA Publikacje:
  142.  K. Darowicki, L. Gawel, Impedance Measurement and Selection of Electrochemical Equivalent Circuit of a Working PEM Fuel Cell Cathode, Electrocatalysis. 8 (2017). doi:10.1007/s12678-017-0363-0. open in new tab
  143.  L. Gawel, L. Nieuzyla, G. Nawrat, K. Darowicki, P. Slepski, Impedance monitoring of corrosion degradation of plasma electrolytic oxidation coatings (PEO) on magnesium alloy, J. Alloys Compd. (2017). doi:10.1016/j.jallcom.2017.06.120. open in new tab
  144.  J. Ryl, L. Gawel, M. Cieslik, H. Gerengi, G. Lentka, P. Slepski, Instantaneous Impedance Analysis of Non-Stationary Corrosion Process: a Case Study of Carbon Steel in 1M HCl, Int. J. Electrochem. Sci. 12 (2017) 6908-6919. doi:10.20964/2017.07.15. Wystąpienia naukowe: open in new tab
  145. Zjazd Naukowy PTCHem w Gdańsku-wystąpienie ustne "Impedancyjna charakterystyka katody ogniwa paliwowego typu PEM" open in new tab
  146.  7th. Kurt Schwabe Symposium, Mittweida-poster "Impedance diagnostic for cathode in working fuel cell" Prace badawcze realizowane z przemysłem:
  147.  Ocena techniczna określająca stan i efektywność zabezpieczenia antykorozyjnego w postaci ochrony katodowej obiektów PPPP "NAFTOPORT" sp. z o.o. open in new tab
  148.  Pomiary skuteczności ochrony katodowej stanowiska przeładunkowego T1 w Bazie Przeładunku Paliw Płynnych w Porcie Północnym w Gdańsku open in new tab
Verified by:
Gdańsk University of Technology

seen 217 times

Recommended for you

Meta Tags