Implementation of spatial information for monitoring and analysis of the area around the port using laser scanning techniques - Publication - Bridge of Knowledge

Search

Implementation of spatial information for monitoring and analysis of the area around the port using laser scanning techniques

Abstract

Nowadays, maritime infrastructure is heavily exploited, which requires monitoring. The article presents the implementation of spatial information which are point clouds for monitoring and analysis of the area around the port (buildings and wharves). For this study, point clouds coming from terrestrial (TLS) and airborne laser scanning (ALS), each of them having different accuracy, were used. An important part of the analysis was the integration of the two data sources. Through integration, the acquisition of information on areas not covered by the measurement in the presented case, one of the methods was possible for use (e.g. the roofs in case of TLS, or the lack of some of the walls of buildings in case of ALS). Another aspect was to use this data. Measurement of the shape and geometry of objects was executed. Additionally, the planeness analysis of individual elements of port infrastructure has been carried out. An interesting analysis was to determine the water level, based on relation to specific characteristics of the light reflectance.

Citations

  • 2 7

    CrossRef

  • 0

    Web of Science

  • 3 8

    Scopus

Cite as

Full text

download paper
downloaded 79 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-SA open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Polish Maritime Research no. 24, pages 10 - 15,
ISSN: 1233-2585
Language:
English
Publication year:
2017
Bibliographic description:
Bobkowska K., Inglot A., Mikusova M., Tysiąc P.: Implementation of spatial information for monitoring and analysis of the area around the port using laser scanning techniques// Polish Maritime Research. -Vol. 24, nr. S1(93) (2017), s.10-15
DOI:
Digital Object Identifier (open in new tab) 10.1515/pomr-2017-0015
Bibliography: test
  1. Szlapczynski, R., Szlapczynska, J.: On evolutionary com- puting in multi-ship trajectory planning, Appl Intell 37: 155, 2012, DOI:10.1007/s10489-011-0319-7 open in new tab
  2. Tse R.O.C., Gold C., Kidner D.: 3D City Modelling from LIDAR Data. In P. Van Oosterom et al., eds. Advances in 3D Geoinformation Systems. Springer Berlin Heidelberg, pp. 161-175, 2008 open in new tab
  3. 4. Introduction to LIDAR, NPS Lidar Workshop, May 24, 2007, Joe Liadsky, Optech Incorporated. open in new tab
  4. Wehr A., Lohr U.,. Airborne laser scanning--an introduc- tion and overview. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 54, Iss. 2-3, pp.68-82, 1999 open in new tab
  5. Kaliński K. J., Galewski M. A. Kaliński K. J., Galewski M. A.: Chatter vibration surveillance by the optimal- linear spindle speed control. Mechanical Systems and Signal Processing, Vol. 25, pp. 383-399, 2011, DOI: 10.1016/j.ymssp.2014.06.016 open in new tab
  6. Kersten T, et al: Geometric accuracy investigations of the latest terrestrial laser scanning systems. FIG Working Week, (June), pp.1-16, 2008 open in new tab
  7. Pawłuszek K., Ziaja M., Borkowski A.: Accuracy Assess- ment of the Height Component of the Airborne Laser Scanning Data Collected in the ISOK System for the Widawa River Valley. Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum, Vol. 13, pp.27-37, 2014 open in new tab
  8. Tysiac, P., Wojtowicz A., Szulwic J.: Coastal Cli s Moni- toring and Prediction of Displacements Using Terrestial Laser Scanning. Baltic Geodetic Congress (Geomatics), IEEE, ISBN: 978-1-5090-2421-6, pp. 61-66, 2016, DOI: 10.1109/BGC.Geomatics.2016.20 open in new tab
  9. Grejner-Brzezinska D.A., et al.: A robust solution to high- accuracy geolocation: Quadruple integration of GPS, IMU, pseudolite, and terrestrial laser scanning. IEEE Transactions on Instrumentation and Measurement, Vol. 60, Iss.11, pp.3694-3708, 2011 open in new tab
  10. Paszotta, Z., Szulwic, J., Szumilo, M.: Internet photogram- metry as a tool for e-learning. 8th International Confer- ence of Education, Research and Innovation, ICERI2015, ISBN: 978-84-608-2657-6, pp. 4565-4573, 2015 open in new tab
  11. Bobkowska, K., Janowski, A., Przyborski, M. and Szul- wic, J.: Analysis of High Resolution Clouds of Points as a Source of Biometric Data, 2016 Baltic Geodetic Congress (Geomatics), Gdansk, 2016, ISBN: 978-1-5090-2421-6, pp. 15-21, DOI: 10.1109/BGC.Geomatics.2016.12 open in new tab
  12. Kalinski K., Buchholz C.: Mechatronic design o strongly nonlinear systems on a basis of three wheeled mobile plat- form. Mechanical Systems and Signal Processing, Vol. 52-53, pp. 700-721, 2015, DOI: 10.1016/j.ymssp.2014.06.016 open in new tab
  13. Mikrut, S., Kohut P. et al.: Mobile Laser Scanning Systems for Measuring the Clearance Gauge of Railways: State of Play, Testing and Outlook. Sensors, Vol. 16, Iss. 5, pp. 683, 2016, DOI: 10.3390/s16050683 open in new tab
  14. Pastucha, E.: Catenary System Detection, Localization and Classi cation Using Mobile Scanning Data. Remote Sens. Vol. 8, Iss. 801, 2016, DOI: 10.3390/rs8100801. open in new tab
  15. Burdziakowski P., Janowski A., Kholodkov A. Matysik K., Matysik M., Przyborski M., Szulwic J., Tysiac P.: Mari- time laser scanning as the source for spatial data. Polish Marit. Res., Vol. 22, Iss. 4, pp. 9-14, 2015, DOI: 10.1515/ pomr-2015-0064
  16. Gorski J., Mikulski T., Ozieblo M., Winkelmann K.: E ect of geometric imperfections on aluminium silo capacities. open in new tab
  17. Stahlbau. Vol. 84, Iss. 1, 2015, pp. 52-57, DOI: 10.1002/ stab.201510224
  18. Rohmer J. and Dewez T.: Analysing the spatial patterns of erosion scars using point process theory at the coastal chalk cli of Mesnil-Val, Normandy, northern France. open in new tab
  19. Nat. Hazards Earth Syst. Sci., Vol. 15, pp. 349-362, 2015, DOI: 10.5194/nhess-15-349-2015 open in new tab
  20. Hö e B., Pfeifer N.: Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 62, Iss. 6, pp.415-433, 2007
  21. Kozaczka E., Grelowska G., Kozaczka S.: Images of the seabed of the gulf of gdansk obtained by means of the parametric sonar. Acta Physica Polonica A. Vol. 118, no.1 s.91-94, 2010. open in new tab
  22. Grelowska G., Kozaczka E.: Underwater Acoustic Imag- ing of the Sea. Archives of Acoustics. Vol. 39, no. 4, pp. 439-452, 2014, DOI: 10.2478/aoa-2014-0048 open in new tab
  23. Rucka M., Wilde K.: Experimental study on ultrasonic monitoring of splitting failure in reinforced concrete. Journal of Nondestructive Evaluation. Vol. 32, Iss. 4, pp.372-383, 2013, DOI: 10.1007/s10921-013-0191-y open in new tab
  24. Nagrodzka-Godycka K., Szulwic J., Ziolkowski P.: e method of analysis of damage reinforced concrete beams using terrestrial laser scanning. 14th International Multidisciplinary Scienti c GeoConference, Interna- tional Multidisciplinary Scienti c GeoConference & EXPO SGEM, ISBN: 978-619-7105-12-4 / ISSN: 1314- 2704, Book 2, Vol. 3, pp. 335-342, 2014, DOI:10.5593/ SGEM2014/B23/S10.042 open in new tab
  25. Janowski A., Nagrodzka-Godycka K., Szulwic J., Ziolkowski P.: Remote sensing and photogrammetry techniques in diagnostics of concrete structures. Comput- ers and Concrete, Vol. 18, Iss. 3, pp. 405-420, 2016, DOI: 10.12989/cac.2016.18.3.405 open in new tab
  26. Tong X., et al.: Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sensing, Vol. 7, Iss. 6, pp.6635-6662, 2015 open in new tab
Verified by:
Gdańsk University of Technology

seen 287 times

Recommended for you

Meta Tags