Improving the Quality of Magnetic Signature Reproduction by Increasing Flexibility of Multi-Dipole Model Structure and Enriching Measurement Information
Abstract
The paper presents the construction of a multi-dipole model that allows reproducing magneticsignatures of ferromagnetic objects. The virtual object used in the paper is an ellipsoid, which is the sourceof synthetic data. To make the situation more realistic, noise is added to the synthetic data. Two significantimprovements compared to previous work are presented. Three-axial magnetometers are introduced insteadof uniaxial magnetometers. However, a more important change is the modification of the model structurethat allows placing dipoles on the entire plane, e.g. object’s deck. The multi-dipole model consists of ana priori assumed number of permanent and induced single-dipole models. Each single dipole is described bythree magnetic moments and, depending on the applied approach, one or two dipole position parameters. Thenon-linear least-squares optimization method is used to determine model parameters. To assess the qualityof magnetic signature reproduction, qualitative and quantitative forms are used. The final quality assessmentis based on differences between the reference fields and the fields determined from the multi-dipole model.The applied modifications bring significant improvement, however, only their combined application allowsto restore magnetic signatures with good quality for directions other than for which the data were available.
Citations
-
1 0
CrossRef
-
0
Web of Science
-
1 1
Scopus
Authors (5)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
IEEE Access
no. 8,
pages 19044 - 190462,
ISSN: 2169-3536 - Language:
- English
- Publication year:
- 2020
- Bibliographic description:
- Tarnawski J., Cichocki A., Rutkowski T., Buszman K., Wołoszyn M.: Improving the Quality of Magnetic Signature Reproduction by Increasing Flexibility of Multi-Dipole Model Structure and Enriching Measurement Information// IEEE Access -Vol. 8, (2020), s.19044-190462
- DOI:
- Digital Object Identifier (open in new tab) 10.1109/access.2020.3031740
- Verified by:
- Gdańsk University of Technology
seen 204 times