Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion
Abstract
In this work, a strategy for one-stage synthesis of polymer composites based on PNIPAAm hydrogel was presented. Both conductive particles in the form of conductive carbon black (cCB) and MnCo2O4 (MCO) spinel particles were suspended in the three-dimensional structure of the hydrogel. The MCO particles in the resulting hydrogel composite acted as an electrocatalyst in the oxygen evolution reaction. Morphological studies confirmed that the added particles were incorporated and, in the case of a higher concentration of cCB particles, also bound to the surface of the structure of the hydrogel matrix. The produced composite materials were tested in terms of their electrical properties, showing that an increase in the concentration of conductive particles in the hydrogel structure translates into a lowering of the impedance modulus and an increase in the double-layer capacitance of the electrode. This, in turn, resulted in a higher catalytic activity of the electrode in the oxygen evolution reaction. The use of a hydrogel as a matrix to suspend the catalyst particles, and thus increase their availability through the electrolyte, seems to be an interesting and promising application approach.
Citations
-
2
CrossRef
-
0
Web of Science
-
2
Scopus
Authors (6)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.3762/bjnano.15.6
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Beilstein Journal of Nanotechnology
no. 15,
pages 57 - 70,
ISSN: 2190-4286 - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Pawłowska S., Cysewska K., Ziai Y., Karczewski J., Jasiński P., Molin S.: Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion// Beilstein Journal of Nanotechnology -,iss. 15 (2024), s.57-70
- DOI:
- Digital Object Identifier (open in new tab) 10.3762/bjnano.15.6
- Sources of funding:
- Verified by:
- Gdańsk University of Technology
seen 107 times
Recommended for you
Powering the Future by Iron Sulfide Type Material (FexSy) Based Electrochemical Materials for Water Splitting and Energy Storage Applications: A Review
- A. Farhan,
- W. Qayyum,
- U. Fatima
- + 7 authors