Insight into the microstructural and durability characteristics of 3D printed concrete: Cast versus printed specimens - Publication - Bridge of Knowledge

Search

Insight into the microstructural and durability characteristics of 3D printed concrete: Cast versus printed specimens

Abstract

This study presents the comparison of microstructural and durability characteristics of 3D printed concrete (3DPC) depending on its production method (printing or casting). Printed samples with different numbers of layers, as well as a cast specimen with an identical mix composition, were produced and compared, with their microstructural pore and solid characteristics quantitatively and qualitatively investigated. For this purpose, scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP) and X-ray micro-computed tomography (micro-CT) were utilized to evaluate the microstructures of the 3DPC. In particular, quantitative approaches using micro-CT data were newly proposed for a better understanding of the microstructural characteristics of 3DPC. Moreover, their durability-related characteristics and transport properties, including freeze-thaw and thermal resistance, were examined and compared. Despite noticeable differences between the microstructures of the printed and cast specimens, including their anisotropic and inter-layer porosity and heterogeneity, confirmed by MIP, SEM and micro-CT, no significant differences in the transport (capillary water porosity and water sorptivity) or durability-related properties (frost and thermal attack) were found. This was due to the dense and homogenous microstructure of 3DPC, which is attributable to the high binder content and low w/b of the mixture. Moreover, the newly proposed evaluation provided reasonable quantitative and qualitative characteristics, which can be used to demonstrate and predict the material properties of 3DPC.

Citations

  • 6

    CrossRef

  • 0

    Web of Science

  • 1 8

    Scopus

Cite as

Full text

download paper
downloaded 8 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Details

Category:
Magazine publication
Type:
Magazine publication
Published in:
Case Studies in Construction Materials no. 17, edition e01320,
ISSN: 2214-5095
Publication year:
2022
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.cscm.2022.e01320
Bibliography: test
  1. S.B. Balani, S.H. Ghaffar, M. Chougan, E. Pei, E. Ş ahin, Processes and materials used for direct writing technologies: a review, Results Eng. 11 (2021), 100257, https://doi.org/10.1016/j.rineng.2021.100257. open in new tab
  2. J. Xiao, G. Ji, Y. Zhang, G. Ma, V. Mechtcherine, J. Pan, L. Wang, T. Ding, Z. Duan, S. Du, Large-scale 3D printing concrete technology: current status and future opportunities, Cem. Concr. Compos. 122 (2021), 104115, https://doi.org/10.1016/j.cemconcomp.2021.104115. open in new tab
  3. S. El-Sayegh, L. Romdhane, S. Manjikian, A critical review of 3D printing in construction: benefits, challenges, and risks, Arch. Civ. Mech. Eng. 20 (2020), https://doi.org/10.1007/s43452-020-00038-w. open in new tab
  4. P. Sikora, M. Chougan, K. Cuevas, M. Liebscher, V. Mechtcherine, S.H. Ghaffar, M. Liard, D. Lootens, P. Krivenko, M. Sanytsky, D. Stephan, The effects of nano- and micro-sized additives on 3D printable cementitious and alkali-activated composites: a review, Appl. Nanosci. (2021), https://doi.org/10.1007/s13204-021- 01738-2. open in new tab
  5. C. Zhang, V.N. Nerella, A. Krishna, S. Wang, Y. Zhang, V. Mechtcherine, N. Banthia, Mix design concepts for 3D printable concrete: a review, Cem. Concr. Compos. 122 (2021), 104155, https://doi.org/10.1016/j.cemconcomp.2021.104155. open in new tab
  6. S. Yu, M. Xia, J. Sanjayan, L. Yang, J. Xiao, H. Du, Microstructural characterization of 3D printed concrete, J. Build. Eng. 44 (2021), 102948, https://doi.org/ 10.1016/j.jobe.2021.102948. open in new tab
  7. J. Kruger, A. Du Plessis, G. van Zijl, An investigation into the porosity of extrusion-based 3D printed concrete, Addit. Manuf. 37 (2021), 101740, https://doi.org/ 10.1016/j.addma.2020.101740. open in new tab
  8. M. Moini, J. Olek, J.P. Youngblood, B. Magee, P.D. Zavattieri, Additive manufacturing and performance of architectured cement-based materials, Adv. Mater. 30 (2018), e1802123, https://doi.org/10.1002/adma.201802123. open in new tab
  9. V.N. Nerella, S. Hempel, V. Mechtcherine, Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing, Constr. Build. Mater. 205 (2019) 586-601, https://doi.org/10.1016/j.conbuildmat.2019.01.235. open in new tab
  10. Y.W.D. Tay, G.H.A. Ting, Y. Qian, B. Panda, L. He, M.J. Tan, Time gap effect on bond strength of 3D-printed concrete, Virtual Phys. Prototyp. 14 (2019) 104-113, https://doi.org/10.1080/17452759.2018.1500420. open in new tab
  11. J. van der Putten, M. Deprez, V. Cnudde, G. de Schutter, K. van Tittelboom, Microstructural characterization of 3D printed cementitious materials, Materials 12 (2019), https://doi.org/10.3390/ma12182993. open in new tab
  12. S. Skibicki, M. Pułtorak, M. Kaszyńska, M. Hoffmann, E. Ekiert, D. Sibera, The effect of using recycled PET aggregates on mechanical and durability properties of 3D printed mortar, Constr. Build. Mater. 335 (2022), 127443, https://doi.org/10.1016/j.conbuildmat.2022.127443. open in new tab
  13. J. van der Putten, M. de Volder, P. van den Heede, G. de Schutter, K. van Tittelboom, 3D printing of concrete: the influence on chloride penetration, in: F.P. Bos, S.S. Lucas, R.J.M. Wolfs, T.A.M. Salet (eds.), Second RILEM International Conference on Concrete and Digital Fabrication, Springer International Publishing, Cham, 2020, pp. 500-7. open in new tab
  14. C. Schröfl, V.N. Nerella, V. Mechtcherine, Capillary Water Intake by 3D-printed concrete visualised and quantified by neutron radiography, in: T. Wangler, R.J. Flatt (eds.), First RILEM International Conference on Concrete and Digital Fabrication -Digital Concrete 2018, Springer International Publishing, Cham, 2019, pp. 217-24. open in new tab
  15. J. Strzałkowski, H. Garbalińska, Usefulness of mercury porosimetry to assess the porosity of cement composites with the addition of aerogel particles, in: I.B. Valente, A. Ventura Gouveia, S.S. Dias (eds.), Proceedings of the 3rd RILEM Spring Convention and Conference (RSCC 2020), Springer International Publishing, Cham, 2021, pp. 411-23. open in new tab
  16. P. Sikora, T. Rucinska, D. Stephan, S.-Y. Chung, M. Abd Elrahman, Evaluating the effects of nanosilica on the material properties of lightweight and ultra- lightweight concrete using image-based approaches, Constr. Build. Mater. 264 (2020), 120241, https://doi.org/10.1016/j.conbuildmat.2020.120241. open in new tab
  17. S.-Y. Chung, J.-S. Kim, P.H. Kamm, D. Stephan, T.-S. Han, M. Abd Elrahman, Pore and solid characterizations of interfacial transition zone of mortar using microcomputed tomography images, J. Mater. Civ. Eng. 33 (2021), 4021348, https://doi.org/10.1061/(ASCE)MT.1943-5533.0003986. open in new tab
  18. M. Chougan, S.H. Ghaffar, P. Sikora, S.-Y. Chung, T. Rucinska, D. Stephan, A. Albar, M.R. Swash, Investigation of additive incorporation on rheological, microstructural and mechanical properties of 3D printable alkali-activated materials, Mater. Des. 202 (2021), 109574, https://doi.org/10.1016/j. matdes.2021.109574. open in new tab
  19. P. Sikora, S.-Y. Chung, M. Liard, D. Lootens, T. Dorn, P.H. Kamm, D. Stephan, M. Abd Elrahman, The effects of nanosilica on the fresh and hardened properties of 3D printable mortars, Constr. Build. Mater. 281 (2021), 122574, https://doi.org/10.1016/j.conbuildmat.2021.122574. open in new tab
  20. L. Kong, M. Ostadhassan, X. Hou, M. Mann, C. Li, Microstructure characteristics and fractal analysis of 3D-printed sandstone using micro-CT and SEM-EDS, J. Pet. Sci. Eng. 175 (2019) 1039-1048, https://doi.org/10.1016/j.petrol.2019.01.050. open in new tab
  21. Y. Chen, S. Chaves Figueiredo, Z. Li, Z. Chang, K. Jansen, O. Çopuroglu, E. Schlangen, Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture, Cem. Concr. Res. 132 (2020), 106040, https://doi.org/10.1016/j.cemconres.2020.106040. open in new tab
  22. J. Xiao, N. Han, L. Zhang, S. Zou, Mechanical and microstructural evolution of 3D printed concrete with polyethylene fiber and recycled sand at elevated temperatures, Constr. Build. Mater. 293 (2021), 123524, https://doi.org/10.1016/j.conbuildmat.2021.123524. open in new tab
  23. A.R. Arunothayan, B. Nematollahi, R. Ranade, S.H. Bong, J.G. Sanjayan, K.H. Khayat, Fiber orientation effects on ultra-high performance concrete formed by 3D printing, Cem. Concr. Res. 143 (2021), 106384, https://doi.org/10.1016/j.cemconres.2021.106384. open in new tab
  24. G. Bai, L. Wang, G. Ma, J. Sanjayan, M. Bai, 3D printing eco-friendly concrete containing under-utilised and waste solids as aggregates, Cem. Concr. Compos. 120 (2021), 104037, https://doi.org/10.1016/j.cemconcomp.2021.104037. open in new tab
  25. Y. Chen, O. Çopuroglu, C. Romero Rodriguez, F.F. de Mendonca Filho, E. Schlangen, Characterization of air-void systems in 3D printed cementitious materials using optical image scanning and X-ray computed tomography, Mater. Charact. 173 (2021), 110948, https://doi.org/10.1016/j.matchar.2021.110948. open in new tab
  26. K. Federowicz, M. Kaszyńska, A. Zieliński, M. Hoffmann, Effect of curing methods on shrinkage development in 3D-printed concrete, Materials 13 (2020), https://doi.org/10.3390/ma13112590. open in new tab
  27. EN 1015-3 -Methods of test for mortar for masonry -Part 3: Determination of consistence of fresh mortar. open in new tab
  28. Y.W.D. Tay, Y. Qian, M.J. Tan, Printability region for 3D concrete printing using slump and slump flow test, Compos. Part B: Eng. 174 (2019), 106968, https:// doi.org/10.1016/j.compositesb.2019.106968. open in new tab
  29. M. Kaszyńska, S. Skibicki, M. Hoffmann, 3D concrete printing for sustainable construction, Energies 13 (2020) 6351, https://doi.org/10.3390/en13236351. open in new tab
  30. K. Cuevas, M. Chougan, F. Martin, S.H. Ghaffar, D. Stephan, P. Sikora, 3D printable lightweight cementitious composites with incorporated waste glass aggregates and expanded microspheres -rheological, thermal and mechanical properties, J. Build. Eng. 44 (2021), 102718, https://doi.org/10.1016/j. jobe.2021.102718. open in new tab
  31. M. Hoffmann, S. Skibicki, P. Pankratow, A. Zieliński, M. Pajor, M. Techman, Automation in the construction of a 3D-printed concrete wall with the use of a lintel gripper, Materials 13 (2020), https://doi.org/10.3390/ma13081800. open in new tab
  32. EN 196-1 -Methods of testing cement -Part 1: Determination of strength. open in new tab
  33. EN 12390-7 -Testing hardened concrete -Part 7: Density of hardened concrete. open in new tab
  34. ISO 15148 -Hygrothermal performance of building materials and products -Determination of water absorption coefficient by partial immersion. open in new tab
  35. ASTM C666 -Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing. open in new tab
  36. N. Bossa, P. Chaurand, J. Vicente, D. Borschneck, C. Levard, O. Aguerre-Chariol, J. Rose, Micro-and nano-X-ray computed-tomography: a step forward in the characterization of the pore network of a leached cement paste, Cem. Concr. Res. 67 (2015) 138-147, https://doi.org/10.1016/j.cemconres.2014.08.007. open in new tab
  37. S.-Y. Chung, J.-S. Kim, D. Stephan, T.-S. Han, Overview of the use of micro-computed tomography (micro-CT) to investigate the relation between the material characteristics and properties of cement-based materials, Constr. Build. Mater. 229 (2019), 116843, https://doi.org/10.1016/j.conbuildmat.2019.116843. open in new tab
  38. S.-Y. Chung, M.A. Elrahman, D. Stephan, P.H. Kamm, Investigation of characteristics and responses of insulating cement paste specimens with Aer solids using X-ray micro-computed tomography, Constr. Build. Mater. 118 (2016) 204-215, https://doi.org/10.1016/j.conbuildmat.2016.04.159. open in new tab
  39. S.-Y. Chung, P. Sikora, D. Stephan, M. Abd Elrahman, The effect of lightweight concrete cores on the thermal performance of vacuum insulation panels, Materials 13 (2020), https://doi.org/10.3390/ma13112632. open in new tab
  40. E. Gallucci, K. Scrivener, A. Groso, M. Stampanoni, G. Margaritondo, 3D experimental investigation of the microstructure of cement pastes using synchrotron X- ray microtomography (μCT, Cem. Concr. Res. 37 (2007) 360-368, https://doi.org/10.1016/j.cemconres.2006.10.012. open in new tab
  41. Y. Yang, Y. Zhang, W. She, Z. Wu, Z. Liu, Y. Ding, Nondestructive monitoring the deterioration process of cement paste exposed to sodium sulfate solution by X- ray computed tomography, Constr. Build. Mater. 186 (2018) 182-190, https://doi.org/10.1016/j.conbuildmat.2018.07.145. open in new tab
  42. H. Lee, J.-H.J. Kim, J.-H. Moon, W.-W. Kim, E.-A. Seo, Evaluation of the mechanical properties of a 3D-printed mortar, Materials 12 (2019), https://doi.org/ 10.3390/ma12244104. open in new tab
  43. C. Joh, J. Lee, T.Q. Bui, J. Park, I.-H. Yang, Buildability and mechanical properties of 3D printed concrete, Materials 13 (2020), https://doi.org/10.3390/ ma13214919. open in new tab
  44. A. Zhang, W. Yang, Y. Ge, P. Liu, Effect of nanomaterials on the mechanical properties and microstructure of cement mortar under low air pressure curing, Constr. Build. Mater. 249 (2020), 118787, https://doi.org/10.1016/j.conbuildmat.2020.118787. open in new tab
  45. D. Ye, D. Zollinger, S. Choi, M. Won, Literature Review of Curing in Portland Cement Concrete Pavement, Technical Report -FHWA/TX06/0-5106-1 -Center for Transportation Research, The University of Texas at Austin, USA, 2006.
  46. H. Yang, W. Li, Y. Che, 3D printing cementitious materials containing nano-CaCO3: workability, strength, and microstructure, Front. Mater. 7 (2020) 260, https://doi.org/10.3389/fmats.2020.00260. open in new tab
  47. J.J. Assaad, F. Hamzeh, B. Hamad, Qualitative assessment of interfacial bonding in 3D printing concrete exposed to frost attack, Case Stud. Constr. Mater. 13 (2020), e00357, https://doi.org/10.1016/j.cscm.2020.e00357. open in new tab
  48. A.M. Neville, J.J. Brooks. Concrete Technology, 2nd edition, Pearson, UK, 2010. open in new tab
  49. P. Sikora, M. Abd Elrahman, D. Stephan, The influence of nanomaterials on the thermal resistance of cement-based composites-a review, Nanomaterials 8 (2018), https://doi.org/10.3390/nano8070465. open in new tab
  50. ASME , Boiler and Pressure Vessel Code Section III -Rules for Construction of Nuclear Facility Components Division 2 -Code for Concrete Containments, American Society of Mechanical Engineers, 2007. open in new tab
  51. F. Lo Monte, R. Felicetti, C. Rossino, Fire spalling sensitivity of high-performance concrete in heated slabs under biaxial compressive loading, Mater. Struct. 52 (2019), https://doi.org/10.1617/s11527-019-1318-0. open in new tab
  52. A. Cicione, J. Kruger, R.S. Walls, G. van Zijl, An experimental study of the behavior of 3D printed concrete at elevated temperatures, Fire Saf. J. 120 (2021), 103075, https://doi.org/10.1016/j.firesaf.2020.103075. open in new tab
  53. P.K. Mehta, P.J.M. Monteiro. Concrete: Microstructure, Properties, and Materials, McGraw-Hill, New York, USA, 2006. open in new tab
  54. B. Baz, G. Aouad, J. Kleib, D. Bulteel, S. Remond, Durability assessment and microstructural analysis of 3D printed concrete exposed to sulfuric acid environments, Constr. Build. Mater. 290 (2021), 123220, https://doi.org/10.1016/j.conbuildmat.2021.123220. open in new tab
  55. Torquato Lu, Lineal-path function for random heterogeneous materials, Phys. Rev. A 45 (1992) 922-929, https://doi.org/10.1103/PhysRevA.45.922. open in new tab
  56. S.-Y. Chung, M. Abd Elrahman, D. Stephan, The effects of anisotropic insulations with different spatial distributions on material properties of mortar specimens, Int. J. Concr. Struct. Mater. 11 (2017) 573-584, https://doi.org/10.1007/s40069-017-0218-3. open in new tab
  57. S.-Y. Chung, D. Stephan, M.A. Elrahman, T.-S. Han, Effects of anisotropic voids on thermal properties of insulating media investigated using 3D printed samples, Constr. Build. Mater. 111 (2016) 529-542, https://doi.org/10.1016/j.conbuildmat.2016.02.165. open in new tab
  58. J.W. Bullard, E.J. Garboczi, Defining shape measures for 3D star-shaped particles: sphericity, roundness, and dimensions, Powder Technol. 249 (2013) 241-252, https://doi.org/10.1016/j.powtec.2013.08.015. open in new tab
Sources of funding:
Verified by:
No verification

seen 15 times

Recommended for you

Meta Tags