Integration Data Model of the Bathymetric Monitoring System for Shallow Waterbodies Using UAV and USV Platforms - Publication - Bridge of Knowledge

Search

Integration Data Model of the Bathymetric Monitoring System for Shallow Waterbodies Using UAV and USV Platforms

Abstract

Changes in the seafloor relief are particularly noticeable in shallow waterbodies (at depths up to several metres), where they are of significance for human safety and environmental protection, as well as for which the highest measurement accuracy is required. The aim of this publication is to present the integration data model of the bathymetric monitoring system for shallow waterbodies using Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicles (USV). As part of this model, three technology components will be created: a hydroacoustic and optoelectronic data integration component proposed by Dąbrowski et al., a radiometric depth determination component based on optoelectronic data using the Support Vector Regression (SVR) method, and a coastline extraction component proposed by Xu et al. Thanks to them, it will be possible to cover the entire area with measurements in the coastal zone, in particular between the shallow waterbody coastline and the min. isobath recorded by the echo sounder (the area is lacking actual measurement data). Multisensor data fusion obtained using Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS), Light Detection And Ranging (LiDAR), Real Time Kinematic (RTK), UAV, and USV will allow to meet the requirements provided for the International Hydrographic Organization (IHO) Special Order (horizontal position error ≤ 2 m (p = 0.95), vertical position error ≤ 0.25 m (p = 0.95)). To this end, bathymetric and photogrammetric measurements shall be carried out under appropriate conditions. The water transparency in the tested waterbody should be at least 2 m. Hydrographic surveys shall be performed in windless weather and the water level is 0 in the Douglas sea scale (no waves or sea currents). However, the mission with the use of an UAV should take place in appropriate meteorological conditions, i.e., no precipitation, windless weather (wind speed not exceeding 6–7 m/s), sunny day.

Citations

  • 2 3

    CrossRef

  • 0

    Web of Science

  • 2 4

    Scopus

Authors (10)

Cite as

Full text

download paper
downloaded 89 times
Publication version
Accepted or Published Version
DOI:
Digital Object Identifier (open in new tab) 10.3390/rs14164075
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Remote Sensing no. 14,
ISSN: 2072-4292
Language:
English
Publication year:
2022
Bibliographic description:
Lewicka O., Specht M., Stateczny A., Specht C., Dardanelli G., Brčić D., Szostak B., Halicki A., Stateczny M., Widźgowski S.: Integration Data Model of the Bathymetric Monitoring System for Shallow Waterbodies Using UAV and USV Platforms// Remote Sensing -Vol. 14,iss. 16 (2022), s.4075-
DOI:
Digital Object Identifier (open in new tab) 10.3390/rs14164075
Sources of funding:
  • Free publication
Verified by:
Gdańsk University of Technology

seen 115 times

Recommended for you

Meta Tags