Abstract
In this paper we study the problem of interval incidence coloring of bipartite graphs. We show the upper bound for interval incidence coloring number (χii) for bipartite graphs χii≤2Δ, and we prove that χii=2Δ holds for regular bipartite graphs. We solve this problem for subcubic bipartite graphs, i.e. we fully characterize the subcubic graphs that admit 4, 5 or 6 coloring, and we construct a linear time exact algorithm for subcubic bipartite graphs. We also study the problem for bipartite graphs with Δ=4 and we show that 5-coloring is easy and 6-coloring is hard (NP-complete). Moreover, we construct an O(nΔ^3.5logΔ) time optimal algorithm for trees.
Citations
-
3
CrossRef
-
0
Web of Science
-
4
Scopus
Authors (3)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.dam.2013.10.007
- License
- Copyright (2013 Elsevier B.V.)
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
DISCRETE APPLIED MATHEMATICS
no. 166,
pages 131 - 140,
ISSN: 0166-218X - Language:
- English
- Publication year:
- 2014
- Bibliographic description:
- Janczewski R., Małafiejska A., Małafiejski M.: Interval incidence coloring of bipartite graphs// DISCRETE APPLIED MATHEMATICS. -Vol. 166, (2014), s.131-140
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.dam.2013.10.007
- Verified by:
- Gdańsk University of Technology
seen 168 times