Key-Marker Volatile Compounds in Aromatic Rice (Oryza sativa) Grains: An HS-SPME Extraction Method Combined with GC×GC-TOFMS - Publication - Bridge of Knowledge

Search

Key-Marker Volatile Compounds in Aromatic Rice (Oryza sativa) Grains: An HS-SPME Extraction Method Combined with GC×GC-TOFMS

Abstract

The aroma of rice essentially contributes to the quality of rice grains. For some varieties, their aroma properties really drive consumer preferences. In this paper, using a dynamic headspace solid-phase microextraction (HS-SPME) system coupled to a two-dimensional gas chromatography (GC×GC) using a time-of-flight mass spectrometric detector (TOFMS) and multivariate analysis, the volatile compounds of aromatic and non-aromatic rice grains were contrasted to define some chemical markers. Fifty-one volatile compounds were selected for principal component analysis resulting in eight key-marker volatile compounds (i.e., pentanal, hexanal, 2-pentyl-furan, 2,4-nonadienal, pyridine, 1-octen-3-ol and (E)-2-octenal) as responsible for the differences between aromatic and non-aromatic rice varieties. The factors that are most likely to affect the HS-SPME efficiency for the aforementioned key-marker compounds were evaluated using a 25−2III fractional factorial design in conjunction with multi-response optimisation. The method precision values, expressed as % of coefficient of variation (CV), were ranging from 1.91% to 26.90% for repeatability (n = 9) and 7.32% to 37.36% for intermediate precision (n = 3 × 3). Furthermore, the method was successfully applied to evaluate the volatile compounds of rice varieties from some Asian countries.

Citations

  • 3 2

    CrossRef

  • 0

    Web of Science

  • 3 5

    Scopus

Cite as

Full text

download paper
downloaded 35 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
MOLECULES no. 24,
ISSN: 1420-3049
Language:
English
Publication year:
2019
Bibliographic description:
Setyaningsih W., Majchrzak T., Dymerski T., Namieśnik J., Palma M.: Key-Marker Volatile Compounds in Aromatic Rice (Oryza sativa) Grains: An HS-SPME Extraction Method Combined with GC×GC-TOFMS// MOLECULES -Vol. 24,iss. 22 (2019), s.4180-
DOI:
Digital Object Identifier (open in new tab) 10.3390/molecules24224180
Bibliography: test
  1. FAOSTAT Food and Agricultural Commodities Production: Countries by Commodity (Rice, Paddy). Available online: http://faostat3.fao.org/browse/rankings/countries_by_commodity/E (accessed on 15 July 2015). open in new tab
  2. Mishra, A.; Kumar, P.; Shamim, M.; Tiwari, K.K.; Fatima, P.; Srivastava, D.; Singh, R.; Yadav, P. Genetic diversity and population structure analysis of Asian and African aromatic rice (Oryza sativa L.) genotypes. J. Genet. 2019, 98, 92. [CrossRef] [PubMed] open in new tab
  3. Ghiasvand, A.R.; Setkova, L.; Pawliszyn, J. Determination of flavour profile in Iranian fragrant rice samples using cold-fibre SPME-GC-TOF-MS. Flavour Fragr. J. 2007, 22, 377-391. [CrossRef] open in new tab
  4. Shan, Q.; Zhang, Y.; Chen, K.; Zhang, K.; Gao, C. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol. J. 2015, 13, 791-800. [CrossRef] [PubMed] open in new tab
  5. Feng, S.; Huang, M.; Crane, J.H.; Wang, Y. Characterization of key aroma-active compounds in lychee (Litchi chinensis Sonn.). J. food drug Anal. 2018, 26, 497-503. [CrossRef] [PubMed] open in new tab
  6. Lim, D.K.; Mo, C.; Lee, J.H.; Long, N.P.; Dong, Z.; Li, J.; Lim, J.; Kwon, S.W. The integration of multi-platform MS-based metabolomics and multivariate analysis for the geographical origin discrimination of Oryza sativa L. J. Food Drug Anal. 2018, 26, 769-777. [CrossRef] [PubMed] open in new tab
  7. Buttery, R.G.; Ling, L.C.; Juliano, B.O.; Turnbaugh, J.G. Cooked rice aroma and 2-acetyl-1-pyrroline. J. Agric. Food Chem. 1983, 31, 823-826. [CrossRef] open in new tab
  8. Gay, F.; Maraval, I.; Roques, S.; Gunata, Z.; Boulanger, R.; Audebert, A.; Mestres, C. Effect of salinity on yield and 2-acetyl-1-pyrroline content in the grains of three fragrant rice cultivars (Oryza sativa L.) in Camargue (France). F. Crop. Res. 2010, 117, 154-160. [CrossRef] open in new tab
  9. Maraval, I.; Sen, K.; Agrebi, A.; Menut, C.; Morere, A.; Boulanger, R.; Gay, F.; Mestres, C.; Gunata, Z. Quantification of 2-acetyl-1-pyrroline in rice by stable isotope dilution assay through headspace solid-phase microextraction coupled to gas chromatography-tandem mass spectrometry. Anal. Chim. Acta 2010, 675, 148-155. [CrossRef] open in new tab
  10. Yahya, F.; Fryer, P.J.; Bakalis, S. The absorption of 2-acetyl-1-pyrroline during cooking of rice (Oryza sativa L.) with Pandan (Pandanus amaryllifolius Roxb.) leaves). Procedia Food Sci. 2011, 1, 722-728. [CrossRef] open in new tab
  11. Grimm, C.C.; Bergman, C.; Delgado, J.T.; Bryant, R. Screening for 2-acetyl-1-pyrroline in the headspace of rice using SPME/GC-MS. J. Agric. Food Chem. 2001, 49, 245-249. [CrossRef] open in new tab
  12. Mahatheeranont, S.; Keawsa-ard, S.; Dumri, K. Quantification of the rice aroma compound, 2-acetyl-1-pyrroline, in uncooked Khao Dawk Mali 105 brown rice. J. Agric. Food Chem. 2001, 49, 773-779. [CrossRef] [PubMed] open in new tab
  13. Laohakunjit, N.; Kerdchoechuen, O. Aroma enrichment and the change during storage of non-aromatic milled rice coated with extracted natural flavor. Food Chem. 2006, 101, 339-344. [CrossRef] open in new tab
  14. Ghiasvand, A.; Nasirian, A.; Koonani, S.; Nouriasl, K. A platinized stainless steel fiber with in-situ coated polyaniline/polypyrrole/graphene oxide nanocomposite sorbent for headspace solid-phase microextraction of aliphatic aldehydes in rice samples. Biomed. Chromatogr. 2017, 31, e4024. [CrossRef] [PubMed] open in new tab
  15. Dymerski, T.; Chmiel, T.; Mostafa, A.; Sliwinska, M.; Wisniewska, P.; Wardencki, W.; Namiesnik, J.; Gorecki, T. Botanical and Geographical Origin Characterization of Polish Honeys by Headspace SPME-GC× GC-TOFMS. Curr. Org. Chem. 2013, 17, 853-870. [CrossRef] Molecules 2019, 24, 4180 open in new tab
  16. Abdulra'uf, L.B.; Tan, G.H. Chemometric approach to the optimization of HS-SPME/GC-MS for the determination of multiclass pesticide residues in fruits and vegetables. Food Chem. 2015, 177, 267-273. [CrossRef] open in new tab
  17. Lim, D.K.; Mo, C.; Lee, D.-K.; Long, N.P.; Lim, J.; Kwon, S.W. Non-destructive profiling of volatile organic compounds using HS-SPME/GC-MS and its application for the geographical discrimination of white rice. J. Food Drug Anal. 2018, 26, 260-267. [CrossRef] open in new tab
  18. Tankiewicz, M.; Morrison, C.; Biziuk, M. Application and optimization of headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-flame-ionization detector (GC-FID) to determine products of the petroleum industry in aqueous samples. Microchem. J. 2013, 108, 117-123. [CrossRef] open in new tab
  19. Bianchin, J.N.; Nardini, G.; Merib, J.; Dias, A.N.; Martendal, E.; Carasek, E. Screening of volatile compounds in honey using a new sampling strategy combining multiple extraction temperatures in a single assay by HS-SPME-GC-MS. Food Chem. 2014, 145, 1061-1065. [CrossRef] open in new tab
  20. Griglione, A.; Liberto, E.; Cordero, C.; Bressanello, D.; Cagliero, C.; Rubiolo, P.; Bicchi, C.; Sgorbini, B. High-quality Italian rice cultivars: Chemical indices of ageing and aroma quality. Food Chem. 2015, 172, 305-313. [CrossRef] open in new tab
  21. Grimm, C.C.; Champagne, E.T.; Ohtsubo, K. Analysis of Volatile Compounds in the Headspace of Rice Using SPME/GC/MS. In Flavor, Fragrance, and Odor Analysis; open in new tab
  22. Marsili, R., Ed.; CRC Press: New York, NY, USA, 2002; pp. 229-248. ISBN 0203908279.
  23. Lin, J.-Y.; Fan, W.; Gao, Y.-N.; Wu, S.-F.; Wang, S.-X. Study on volatile compounds in rice by HS-SPME and GC-MS. In Proceedings of the 10th International Working Conference on Stored Product Protection, Estoril, Portugal, 27 June-2 July 2010; pp. 125-134. [CrossRef] open in new tab
  24. Weber, D.J.; Rohilla, R.; Singh, U.S. Chemistry and Biochemistry of Aroma in Scented Rice. In Aromatic Rices;
  25. Singh, R.K., Singh, U.S., Khush, G.S., Eds.; Oxford & IBH Publishing Co. Pvt. Ltd.: New Delhi, India, 2000; p. 300. ISBN 8120414209.
  26. Bryant, R.J.; McClung, A.M. Volatile profiles of aromatic and non-aromatic rice cultivars using SPME/GC-MS. Food Chem. 2011, 124, 501-513. [CrossRef] open in new tab
  27. Buttery, R.G.; Turnbaugh, J.G.; Ling, L.C. Contribution of Volatiles to Rice Aroma. J. Agric. Food Chem. 1988, 36, 1006-1009. [CrossRef] open in new tab
  28. Piyachaiseth, T.; Jirapakkul, W.; Chaiseri, S. Aroma Compounds of Flash-Fried Rice. Nat. Sci. 2011, 45, 717-729.
  29. Cho, S.; Nuijten, E.; Shewfelt, R.L.; Kays, S.J. Aroma chemistry of African Oryza glaberrima and Oryza sativa rice and their interspecific hybrids. J. Sci. Food Agric. 2014, 94, 727-735. [CrossRef] [PubMed] open in new tab
  30. Nadaf, A.B.; Wakte, K.V.; Thengane, R.J.; Jawali, N. Review on Pandanus amaryllifolius Roxb.: The Plant with Rich Source of Principle Basmati Aroma Compound 2 Acetyl-1-Pyrroline. J. Biotechnol. 2008, 2, 61.
  31. Calingacion, M.; Fang, L.; Quiatchon-Baeza, L.; Mumm, R.; Riedel, A.; Hall, R.D.; Fitzgerald, M. Delving deeper into technological innovations to understand differences in rice quality. Rice 2015, 8, 43. [CrossRef] [PubMed] open in new tab
  32. Givianrad, M.H. Characterization and assessment of flavor compounds and some allergens in three Iranian rice cultivars during gelatinization process by HS-SPME/GC-MS. E-Journal Chem. 2012, 9, 716-728. [CrossRef] open in new tab
  33. Mahattanatawee, K.; Rouseff, R.L. Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using GC-Olfactometry and GC-PFPD. Food Chem. 2014, 154, 1-6. [CrossRef] open in new tab
  34. Setyaningsih, W.; Saputro, I.E.; Palma, M.; Barroso, C.G. Optimisation and validation of the microwave-assisted extraction of phenolic compounds from rice grains. Food Chem. 2015, 169, 141-149. [CrossRef] open in new tab
  35. Setyaningsih, W.; Saputro, I.E.; Palma, M.; Barroso, C.G. Pressurized liquid extraction of phenolic compounds from rice (Oryza sativa) grains. Food Chem. 2016, 192, 452-459. [CrossRef] open in new tab
  36. Lloyd, S.W.; Grimm, C.C. Flavor Profiles of Aromatic and non-Aromatic Rice Varieties. In Proceedings of the PITTCON Conference and Expo 2010; Pittsburgh Conference, Orlando, FL, USA, 28 February-5 March 2010. open in new tab
  37. Lee, G.W.; Lee, S.; Chung, M.-S.; Jeong, Y.S.; Chung, B.Y. Rice terpene synthase 20 (OsTPS20) plays an important role in producing terpene volatiles in response to abiotic stresses. Protoplasma 2014, 20, 997-1007. [CrossRef] open in new tab
  38. Mathure, S.V.; Jawali, N.; Thengane, R.J.; Nadaf, A.B. Comparative quantitative analysis of headspace volatiles and their association with BADH2 marker in non-basmati scented, basmati and non-scented rice (Oryza sativa L.) cultivars of India. Food Chem. 2014, 142, 383-391. [CrossRef] [PubMed] open in new tab
  39. Yang, D.S.; Lee, K.-S.; Kays, S.J. Characterization and discrimination of premium-quality, waxy, and black-pigmented rice based on odor-active compounds. J. Sci. Food Agric. 2010, 90, 2595-2601. [CrossRef] [PubMed] open in new tab
  40. Maraval, I.; Mestres, C.; Pernin, K.; Ribeyre, F.; Boulanger, R.; Guichard, E.; Gunata, Z. Odor-active compounds in cooked rice cultivars from Camargue (France) analyzed by GC-O and GC-MS. J. Agric. Food Chem. 2008, 56, 5291-5298. [CrossRef] [PubMed] open in new tab
  41. Widjaja, R.; Craske, J.D.; Wootton, M. Comparative studies on volatile components of non-fragrant and fragrant rices. J. Sci. Food Agric. 1996, 70, 151-161. [CrossRef] open in new tab
  42. Jezussek, M.; Juliano, B.O.; Schieberle, P. Comparison of key aroma compounds in cooked brown rice varieties based on aroma extract dilution analyses. J. Agric. Food Chem. 2002, 50, 1101-1105. [CrossRef] [PubMed] open in new tab
  43. Cao, P.; Liu, C.; Liu, K. Aromatic constituents in fresh leaves of Lingtou Dancong tea induced by drought stress. Front. Agric. China 2007, 1, 81-84. [CrossRef] open in new tab
  44. Karki, S.; Rizal, G.; Quick, W.P. Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C 4 pathway. Rice 2013, 6, 1-8. [CrossRef] open in new tab
  45. Setyaningsih, W.; Hidayah, N.; Saputro, I.E.; Palma, M.; García Barroso, C. Profile of phenolic compounds in Indonesian rice (Oryza sativa) varieties throughout post-harvest practices. J. Food Compos. Anal. 2016, 54, 55-62. [CrossRef] open in new tab
  46. ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories. Available online: http://faostat3.fao.org/browse/rankings/countries_by_commodity/E (accessed on 15 November 2017). open in new tab
  47. ICH Topic Q2 (R1) Validation of Analytical Procedures: Text and Methodology. 2005. Available online: https://database.ich.org/sites/default/files/Q2_R1__Guideline.pdf (accessed on 15 November 2005). open in new tab
  48. Zakiyah, N.M.; Handoyo, T.; Kim, K.M. Genetic Diversity Analysis of Indonesian Aromatic Rice Varieties (Oryza sativa L.) Using RAPD. J. Crop. Sci. Biotechnol. 2019, 22, 55-63. [CrossRef] open in new tab
  49. Giraud, G. The World Market of Fragrant Rice, Main Issues and Perspectives. Int. Food Agribus. Manag. Rev. 2013, 16, 1-20.
  50. Funsueb, S.; Krongchai, C.; Mahatheeranont, S.; Kittiwachana, S. Prediction of 2-acetyl-1-pyrroline content in grains of Thai Jasmine rice based on planting condition, plant growth and yield component data using chemometrics. Chemom. Intell. Lab. Syst. 2016, 156, 203-210. [CrossRef] open in new tab
  51. Wakte, K.V.; Thengane, R.J.; Jawali, N.; Nadaf, A.B. Optimization of HS-SPME conditions for quantification of 2-acetyl-1-pyrroline and study of other volatiles in Pandanus amaryllifolius Roxb. Food Chem. 2010, 121, 595-600. [CrossRef] open in new tab
  52. Sample Availability: Samples are not available from the authors. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 106 times

Recommended for you

Meta Tags