Abstract
Wykorzystywanie sygnałów elektromiografii powierzchniowej (ang. Surface Electromyography, SEMG) w procesach sterowania systemami rehabilitacyjnymi stanowi obecnie standardową procedurę. Popularność SEMG wynika z nieinwazyjności metody oraz możliwości szybkiej i precyzyjnej identyfikacji funkcji mięśniowej. W przypadku osób małoletnich proces klasyfikacji sygnałów jest utrudniony ze względu na mniejsze rozmiary i wyższą dynamikę aktywności włókien mięśniowych niż u osób dorosłych. W związku z powyższymi uwagami, w artykule przedstawiono wyniki badań zwiększających wskaźnik poprawnej klasyfikacji wybranych ruchów dłoni dzieci. Omówiono zastosowane do tego celu modele matematyczne: k-najbliższych sąsiadów, drzewo decyzyjne oraz metodę wektorów nośnych; a także zastosowane miary i metodykę „strojenia” parametrów modeli.
Authors (3)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
- Published in:
-
Modelowanie Inżynierskie
pages 81 - 87,
ISSN: 1896-771X - Language:
- Polish
- Publication year:
- 2017
- Bibliographic description:
- Rzyman G., Redlarski G., Krawczuk M.: Komputerowo wspomagana klasyfikacja wybranych sygnałów elektromiografii powierzchniowej// Modelowanie Inżynierskie. -., iss. 62 (2017), s.81-87
- Verified by:
- Gdańsk University of Technology
Referenced datasets
seen 179 times