Laser-assisted modification of titanium dioxide nanotubes in a tilted mode as surface modification and patterning strategy - Publication - Bridge of Knowledge

Search

Laser-assisted modification of titanium dioxide nanotubes in a tilted mode as surface modification and patterning strategy

Abstract

Electrochemical anodization is regarded as a facile and easily scalable fabrication method of titania nanotubes (TiO2NTs). However, due to the extended duration of calcination and further modifications, much faster alternatives are highly required. As a response to growing interest in laser modification of nanotube arrays, a comprehensive investigation of pulsed-laser irradiation and its effect onto TiO2NT properties has been carried out. The impact of irradiation onto the surface being placed at different angles in respect to the laser beam was studied and evaluated. The usage of the motorized table enables formation of laser-treated traces over the selected area. SEM and TEM analysis provides insight into morphological changes and shows partial melting of nanotubes surface, which is accompanied by the decrease of internal TiO2 tube diameter just below the melted region. Although structural and optical analysis consisting of Raman, photoluminescence and UV–Vis data indicate that presented method does not result in complete material crystallization, it promotes creation of advantageous localized states within TiO2 bandgap that may play a crucial role in charge separation. Moreover, impressive improvements to the mechanical properties resulting from the laser-modification are presented.

Citations

  • 1 3

    CrossRef

  • 1 0

    Web of Science

  • 1 2

    Scopus

Cite as

Full text

download paper
downloaded 85 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
APPLIED SURFACE SCIENCE no. 508, pages 1 - 10,
ISSN: 0169-4332
Language:
English
Publication year:
2020
Bibliographic description:
Wawrzyniak J., Karczewski J., Kupracz P., Grochowska K., Załęski K., Pshyk O., Coy E., Bartmański M., Szkodo M., Siuzdak K.: Laser-assisted modification of titanium dioxide nanotubes in a tilted mode as surface modification and patterning strategy// APPLIED SURFACE SCIENCE -Vol. 508, (2020), s.1-10
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.apsusc.2019.145143
Bibliography: test
  1. J.S. Khaw, M. Curioni, P. Skeldon, C.R. Bowen, S.H. Cartmell, A novel methodology for economical scale-up of TiO 2 nanotubes fabricated on Ti and Ti alloys, J. Nanotech. 2019 (2019) 1-13, https://doi.org/10.1155/2019/5902346. open in new tab
  2. M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai, C.A. Grimes, TiO 2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion, J. Phys. Chem. C. 111 (2007) 14992-14997, https://doi.org/10.1021/jp075258r. open in new tab
  3. S. Ozkan, N.T. Nguyen, A. Mazare, P. Schmuki, Optimized spacing between TiO 2 nanotubes for enhanced light harvesting and charge transfer, ChemElectroChem 5 (2018) 3183-3190, https://doi.org/10.1002/celc.201801136. open in new tab
  4. J. Kim, B. Kim, C. Oh, J. Ryu, H. Kim, E. Park, K. No, S. Hong, Effects of NH 4 F and distilled water on structure of pores in TiO 2 nanotube arrays, Sci Rep. 8 (2018) 12487, https://doi.org/10.1038/s41598-018-30668-3. open in new tab
  5. X. Kang, S. Chen, Photocatalytic reduction of methylene blue by TiO 2 nanotube arrays: effects of TiO 2 crystalline phase, J Mater Sci. 45 (2010) 2696-2702, https:// doi.org/10.1007/s10853-010-4254-5. open in new tab
  6. X. Wang, L. Sun, S. Zhang, X. Wang, Ultralong, small-diameter TiO 2 nanotubes achieved by an optimized two-step anodization for efficient dye-sensitized solar cells, ACS Appl. Mater. Interf. 6 (2014) 1361-1365, https://doi.org/10.1021/ am404966e. open in new tab
  7. L. Li, Z. Liu, Q. Zhang, C. Meng, T. Zhang, J. Zhai, Underwater superoleophobic porous membrane based on hierarchical TiO 2 nanotubes: multifunctional integra- tion of oil-water separation, flow-through photocatalysis and self-cleaning, J. Mater. Chem. A 3 (2015) 1279-1286, https://doi.org/10.1039/C4TA04699D. open in new tab
  8. B. Karunagaran, P. Uthirakumar, S.J. Chung, S. Velumani, E.-K. Suh, TiO 2 thin film gas sensor for monitoring ammonia, Mater. Character. 58 (2007) 680-684, https:// doi.org/10.1016/j.matchar.2006.11.007. open in new tab
  9. M. Benčina, I. Junkar, R. Zaplotnik, M. Valant, A. Iglič, M. Mozetič, Plasma-induced crystallization of TiO 2 nanotubes, Materials 12 (2019) 626, https://doi.org/10. 3390/ma12040626. open in new tab
  10. J. Yu, G. Dai, B. Cheng, Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO 2 nanotube array films, J. Phys. Chem. C 114 (2010) 19378-19385, https://doi.org/10.1021/jp106324x. open in new tab
  11. A. John, M. Thankamoniamma, J. Puigdollers, R. Anuroop, B. Pradeep, T. Shripathi, R.R. Philip, Rapid room temperature crystallization of TiO 2 nanotubes, CrystEngComm. 19 (2017) 1585-1589, https://doi.org/10.1039/C6CE02526A. open in new tab
  12. A. Casu, A. Lamberti, S. Stassi, A. Falqui, Crystallization of TiO 2 nanotubes by in situ heating TEM, Nanomaterials 8 (2018) 40, https://doi.org/10.3390/ nano8010040. open in new tab
  13. A. Lamberti, A. Chiodoni, N. Shahzad, S. Bianco, M. Quaglio, C.F. Pirri, Ultrafast room-temperature crystallization of TiO 2 nanotubes exploiting water-vapor treat- ment, Sci Rep. 5 (2015) 7808, https://doi.org/10.1038/srep07808. open in new tab
  14. Y. Liao, W. Que, P. Zhong, J. Zhang, Y. He, A facile method to crystallize amorphous anodized TiO 2 nanotubes at low temperature, ACS Appl. Mater. Interf.. 3 (2011) 2800-2804, https://doi.org/10.1021/am200685s. open in new tab
  15. C.K. Chung, S.L. Lin, S.Y. Cheng, K.P. Chuang, H.Y. Wang, Effect of sol-gel com- position ratio and laser power on phase transformation of crystalline titanium di- oxide under CO 2 laser annealing, Micro Nano Lett. 6 (2011) 494, https://doi.org/ 10.1049/mnl.2011.0133. open in new tab
  16. J.S. Hoppius, D. Bialuschewski, S. Mathur, A. Ostendorf, E.L. Gurevich, Femtosecond laser crystallization of amorphous titanium oxide thin films, Appl. Phys. Lett. 113 (2018) 071904, , https://doi.org/10.1063/1.5027899. open in new tab
  17. J. Kim, J. Kim, M. Lee, Laser welding of nanoparticulate TiO 2 and transparent conducting oxide electrodes for highly efficient dye-sensitized solar cell, Nanotechnology. 21 (2010) 345203, , https://doi.org/10.1088/0957-4484/21/34/ 345203. open in new tab
  18. Y. Xu, M.A. Melia, L. Tsui, J.M. Fitz-Gerald, G. Zangari, Laser-induced surface modification at anatase TiO 2 nanotube array photoanodes for photoelectrochemical water oxidation, J. Phys. Chem. C. 121 (2017) 17121-17128, https://doi.org/10. 1021/acs.jpcc.7b05368. open in new tab
  19. M.-Y. Hsu, N. Van Thang, C. Wang, J. Leu, Structural and morphological transfor- mations of TiO 2 nanotube arrays induced by excimer laser treatment, Thin Solid Films 520 (2012) 3593-3599, https://doi.org/10.1016/j.tsf.2011.12.036. open in new tab
  20. M. Pavlenko, E.L. Coy, M. Jancelewicz, K. Załęski, V. Smyntyna, S. Jurga, I. Iatsunskyi, Enhancement of optical and mechanical properties of Si nanopillars by ALD TiO 2 coating, RSC Adv. 6 (2016) 97070-97076, https://doi.org/10.1039/ C6RA21742G. open in new tab
  21. Q. Zhang, L. Ma, M. Shao, J. Huang, M. Ding, X. Deng, X. Wei, X. Xu, Anodic oxidation synthesis of one-dimensional TiO2 nanostructures for photocatalytic and field emission properties, J. Nanomater. 2014 (2014) 1-14, https://doi.org/10. 1155/2014/831752. open in new tab
  22. V. Likodimos, T. Stergiopoulos, P. Falaras, J. Kunze, P. Schmuki, Phase composi- tion, size, orientation, and antenna effects of self-assembled anodized titania na- notube arrays: a polarized Micro-Raman investigation, J. Phys. Chem. C 112 (2008) 12687-12696, https://doi.org/10.1021/jp8027462. open in new tab
  23. M. Fernández-García, X. Wang, C. Belver, J.C. Hanson, J.A. Rodriguez, Anatase- TiO 2 nanomaterials: morphological/size dependence of the crystallization and phase behavior phenomena, J. Phys. Chem. C. 111 (2007) 674-682, https://doi. org/10.1021/jp065661i. open in new tab
  24. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, mod- ifications, and applications, Chem. Rev. 107 (2007) 2891-2959, https://doi.org/10. 1021/cr0500535. open in new tab
  25. A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Phys. Rev. B 64 (2001) 075414, , https://doi.org/10. 1103/PhysRevB.64.075414. open in new tab
  26. A. Li Bassi, D. Cattaneo, V. Russo, C.E. Bottani, E. Barborini, T. Mazza, P. Piseri, P. Milani, F.O. Ernst, K. Wegner, S.E. Pratsinis, Raman spectroscopy characteriza- tion of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry, J. Appl. Phys. 98 (2005) 074305, , https://doi.org/10.1063/1. 2061894. open in new tab
  27. K.-H. Sun, Fundamental conditions of glass formation, J Am. Ceram. Soc. 30 (1947) 277-281, https://doi.org/10.1111/j.1151-2916.1947.tb19654.x. open in new tab
  28. F.H. Stillinger, A topographic view of supercooled liquids and glass formation, Science 267 (1995) 1935-1939, https://doi.org/10.1126/science.267.5206.1935. open in new tab
  29. D.R.G. Mitchell, DiffTools: Electron diffraction software tools for DigitalMicrograph™, Microscopy Res. Tech. 71 (2008) 588-593, https://doi.org/ 10.1002/jemt.20591. open in new tab
  30. J. Tauc, Optical properties of amorphous semiconductors, in: J. Tauc (Ed.), Amorphous and Liquid Semiconductors, Springer, US, Boston, MA, 1974, pp. 159-220. open in new tab
  31. A.S. Hassanien, A.A. Akl, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd 50 S50-x S e x thin films, J. All. Comp. 648 (2015) 280-290, https://doi.org/10.1016/j.jallcom.2015.06.231. open in new tab
  32. M. Janczarek, E. Kowalska, On the origin of enhanced photocatalytic activity of copper-modified titania in the oxidative reaction systems, Catalysts 7 (2017) 317, https://doi.org/10.3390/catal7110317. open in new tab
  33. B. Bharti, S. Kumar, H.-N. Lee, R. Kumar, Formation of oxygen vacancies and Ti 3+ state in TiO 2 thin film and enhanced optical properties by air plasma treatment, Sci. Rep. 6 (2016) 32355, https://doi.org/10.1038/srep32355. open in new tab
  34. S. Mathew, A. Kumar Prasad, T. Benoy, P.P. Rakesh, M. Hari, T.M. Libish, P. Radhakrishnan, V.P.N. Nampoori, C.P.G. Vallabhan, UV-Visible photo- luminescence of TiO 2 nanoparticles prepared by hydrothermal method, J. Fluoresc. 22 (2012) 1563-1569, https://doi.org/10.1007/s10895-012-1096-3. open in new tab
  35. A. Stevanovic, M. Büttner, Z. Zhang, J.T. Yates, Photoluminescence of TiO2: effect of UV light and adsorbed molecules on surface band structure, J. Am. Chem. Soc. 134 (2012) 324-332, https://doi.org/10.1021/ja2072737. open in new tab
  36. C. Mercado, Z. Seeley, A. Bandyopadhyay, S. Bose, J.L. McHale, Photoluminescence of dense nanocrystalline titanium dioxide thin films: effect of doping and thickness and relation to gas sensing, ACS Appl. Mater. Interf. 3 (2011) 2281-2288, https:// doi.org/10.1021/am2006433. open in new tab
  37. N.D. Abazović, M.I. Čomor, M.D. Dramićanin, D.J. Jovanović, S.P. Ahrenkiel, J.M. Nedeljković, Photoluminescence of anatase and rutile TiO 2 particles, J. Phys. Chem. B 110 (2006) 25366-25370, https://doi.org/10.1021/jp064454f. open in new tab
  38. D.K. Pallotti, L. Passoni, P. Maddalena, F. Di Fonzo, S. Lettieri, Photoluminescence mechanisms in anatase and rutile TiO 2 , J. Phys. Chem. C 121 (2017) 9011-9021, https://doi.org/10.1021/acs.jpcc.7b00321. open in new tab
  39. W.-Y. Chang, T.-H. Fang, Z.-W. Chiu, Y.-J. Hsiao, L.-W. Ji, Nanomechanical prop- erties of array TiO 2 nanotubes, Microporous Mesoporous Mater. 145 (2011) 87-92, https://doi.org/10.1016/j.micromeso.2011.04.035. open in new tab
  40. Y.N. Xu, M.N. Liu, M.C. Wang, A. Oloyede, J.M. Bell, C. Yan, Nanoindentation study of the mechanical behavior of TiO 2 nanotube arrays, J. Appl. Phys. 118 (2015) 145301, , https://doi.org/10.1063/1.4932213. open in new tab
Verified by:
Gdańsk University of Technology

seen 55 times

Recommended for you

Meta Tags