Abstract
we address the well-posedness of the planar linearized equilibrium problem for homogenized pantographic lattices. To do so: (i) we introduce a class of subsets of anisotropic Sobolev’s space as the most suitable energy space E relative to assigned boundary conditions; (ii) we prove that the considered strain energy density is coercive and positive definite in E ; (iii) we prove that the set of placements for which the strain energy is vanishing (the so-called floppy modes) must strictly include rigid motions; (iv) we determine the restrictions on displacement boundary conditions which assure existence and uniqueness of linear static problems. The presented results represent one of the first mechanical applications of the concept of Anisotropic Sobolev space, initially introduced only on the basis of purely abstract mathematical considerations.
Citations
-
1 1 6
CrossRef
-
0
Web of Science
-
1 1 4
Scopus
Authors (4)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
JOURNAL OF ELASTICITY
no. 132,
edition 2,
pages 175 - 196,
ISSN: 0374-3535 - Language:
- English
- Publication year:
- 2018
- Bibliographic description:
- Eremeev V., Dell'isola F., Boutin C., Steigmann D.: Linear Pantographic Sheets: Existence and Uniqueness of Weak Solutions// JOURNAL OF ELASTICITY. -Vol. 132, iss. 2 (2018), s.175-196
- DOI:
- Digital Object Identifier (open in new tab) 10.1007/s10659-017-9660-3
- Verified by:
- Gdańsk University of Technology
seen 216 times
Recommended for you
On existence and uniqueness of weak solutions for linear pantographic beam lattices models
- V. Eremeev,
- F. S. Alzahrani,
- A. Cazzani
- + 4 authors
Weak Solutions within the Gradient-Incomplete Strain-Gradient Elasticity
- V. Eremeev,
- F. dell'Isola
On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity
- V. Eremeev,
- S. Lurie,
- Y. Solyaev
- + 1 authors