Linear Pantographic Sheets: Existence and Uniqueness of Weak Solutions - Publication - Bridge of Knowledge

Search

Linear Pantographic Sheets: Existence and Uniqueness of Weak Solutions

Abstract

we address the well-posedness of the planar linearized equilibrium problem for homogenized pantographic lattices. To do so: (i) we introduce a class of subsets of anisotropic Sobolev’s space as the most suitable energy space E relative to assigned boundary conditions; (ii) we prove that the considered strain energy density is coercive and positive definite in E ; (iii) we prove that the set of placements for which the strain energy is vanishing (the so-called floppy modes) must strictly include rigid motions; (iv) we determine the restrictions on displacement boundary conditions which assure existence and uniqueness of linear static problems. The presented results represent one of the first mechanical applications of the concept of Anisotropic Sobolev space, initially introduced only on the basis of purely abstract mathematical considerations.

Citations

  • 1 1 1

    CrossRef

  • 0

    Web of Science

  • 1 1 0

    Scopus

Authors (4)

Cite as

Full text

download paper
downloaded 46 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF ELASTICITY no. 132, edition 2, pages 175 - 196,
ISSN: 0374-3535
Language:
English
Publication year:
2018
Bibliographic description:
Eremeev V., Dell'isola F., Boutin C., Steigmann D.: Linear Pantographic Sheets: Existence and Uniqueness of Weak Solutions// JOURNAL OF ELASTICITY. -Vol. 132, iss. 2 (2018), s.175-196
DOI:
Digital Object Identifier (open in new tab) 10.1007/s10659-017-9660-3
Bibliography: test
  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Pure and Applied Mathematics, vol. 140. Aca- demic Press, Amsterdam (2003) open in new tab
  2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I. Commun. Pure Appl. Math. 12(4), 623- 727 (1959) open in new tab
  3. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II. Commun. Pure Appl. Math. 17(1), 35- 92 (1964) open in new tab
  4. Agranovich, M.: Elliptic boundary problems. In: Agranovich, M., Egorov, Y., Shubin, M. (eds.) Par- tial Differential Equations IX: Elliptic Boundary Problems. Encyclopaedia of Mathematical Sciences, vol. 79, pp. 1-144. Springer, Berlin (1997) open in new tab
  5. Auffray, N., dell'Isola, F., Eremeyev, V.A., Madeo, A., Rosi, G.: Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375-417 (2015) open in new tab
  6. Barozzi, G.C.: Un problema al contorno non omogeneo in un dominio angoloso per equazioni fortemente quasi-ellittiche in due variabili (I). Rend. Semin. Mat. Univ. Padova 44, 27-63 (1970)
  7. Barozzi, G.C.: Un problema al contorno non omogeneo in un dominio angoloso per equazioni fortemente quasi-ellittiche in due variabili (II). Rend. Semin. Mat. Univ. Padova 44, 319-337 (1970)
  8. Battista, A., Cardillo, C., Vescovo, D.D., Rizzi, N.L., Turco, E.: Frequency shifts induced by large de- formations in planar pantographic continua. Int. J. Nanomech. Sci. Technol. 6(2), 161-178 (2015) open in new tab
  9. Besov, O.V., II'in, V.P., Nikol'skii, S.M.: Integral Representations of Functions and Imbedding Theo- rems, vol. 1 Wiley, New York (1978)
  10. Besov, O.V., II'in, V.P., Nikol'skii, S.M.: Integral Representations of Functions and Imbedding Theo- rems, vol. 2. Wiley, New York (1979)
  11. Besov, O.V., II'in, V.P., Nikol'skii, S.M.: Integral Representations of Functions and Imbedding Theo- rems. Nauka, Moscow (1996) (in Russian)
  12. Boutin, C., dell'Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127-162 (2017) open in new tab
  13. Cavallucci, A.: Sulle proprietà differenziali delle soluzioni delle equazioni quasi-ellittiche. Ann. Mat. Pura Appl. 67(1), 143-167 (1965) open in new tab
  14. Challamel, N., Kocsis, A., Wang, C.M.: Higher-order gradient elasticity models applied to geometrically nonlinear discrete systems. Theor. Appl. Mech. 42(4), 223-248 (2015) open in new tab
  15. Chambon, R., Moullet, J.C.: Uniqueness studies in boundary value problems involving some second gradient models. Comput. Methods Appl. Mech. Eng. 193(27), 2771-2796 (2004) open in new tab
  16. Ciarlet, P.G.: Mathematical Elasticity, vol. I: Three-Dimensional Elasticity. North-Holland, Amsterdam (1988) open in new tab
  17. Cordero, N.M., Forest, S., Busso, E.P.: Second strain gradient elasticity of nano-objects. J. Mech. Phys. Solids (2016). doi:10.1016/j.jmps.2015.07.012 open in new tab
  18. Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153-172 (2014)
  19. dell'Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887-928 (2015) open in new tab
  20. dell'Isola, F., Della Corte, A., Esposito, R., Russo, L.: Some cases of unrecognized transmission of scientific knowledge: from antiquity to Gabrio Piola's peridynamics and generalized continuum theories. In: Generalized Continua as Models for Classical and Advanced Materials, pp. 77-128. Springer, New York (2016) open in new tab
  21. dell'Isola, F., Della Corte, A., Giorgio, I.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 22, 852-872 (2016) open in new tab
  22. dell'Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenisation, experimental and numerical examples of equilibrium. Proc. R. Soc. Lond. Ser. A 472(2185), 20150 (2016) open in new tab
  23. dell'Isola, F., Porfiri, M., Vidoli, S.: Piezo-electromechanical (PEM) structures: passive vibration control using distributed piezoelectric transducers. C. R., Méc. 331(1), 69-76 (2003) open in new tab
  24. dell'Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach "á la d'Alember". Z. Angew. Math. Phys. 63(6), 1119-1141 (2012) open in new tab
  25. Dyson, F.: Characterizing irregularity. Science 200(4342), 677-678 (1978) open in new tab
  26. Eastham, J.F., Peterson, J.S.: The finite element method in anisotropic Sobolev spaces. Comput. Math. Appl. 47(10), 1775-1786 (2004) open in new tab
  27. Egorov, Y.V., Shubin, M.A.: Foundations of the Classical Theory of Partial Differential Equations, 1st edn. Encyclopaedia of Mathematical Sciences, vol. 30. Springer, Berlin (1998) open in new tab
  28. Eremeyev, V.A., Lebedev, L.P.: Existence of weak solutions in elasticity. Math. Mech. Solids 18(2), 204-217 (2013) open in new tab
  29. Eugster, S.R., dell'Isola, F.: Exegesis of the introduction and Sect. I from "Fundamentals of the Mechan- ics of Continua" by E. Hellinger. Z. Angew. Math. Mech. 97(4), 477-506 (2017) open in new tab
  30. Evans, L.C.: Partial Differential Equations, 2nd edn. Graduate Series in Mathematics, vol. 19. Am. Math. Soc., Providence (2010) open in new tab
  31. Fichera, G.: Linear Elliptic Differential Systems and Eigenvalue Problems. Lecture Notes in Mathemat- ics, vol. 8. Springer, Berlin (1965) open in new tab
  32. Fichera, G.: Existence theorems in elasticity. In: Flügge, S. (ed.) Handbuch der Physik, vol. VIa/2, pp. 347-389. Springer, Berlin (1972) open in new tab
  33. Germain, P.: La méthode des puissances virtuelles en mécanique des milieux continus. Première partie: théorie du second gradient. J. Méc. 12, 236-274 (1973)
  34. Germain, P.: The method of virtual power in continuum mechanics, part 2: microstructure. SIAM J. Appl. Math. 25(3), 556-575 (1973) open in new tab
  35. Giorgio, I., Galantucci, L., Della Corte, A., Del Vescovo, D.: Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: current and upcoming applications. Int. J. Appl. Electromagn. Mech. 47(4), 1051-1084 (2015) open in new tab
  36. Healey, T.J., Krömer, S.: Injective weak solutions in second-gradient nonlinear elasticity. ESAIM Con- trol Optim. Calc. Var. 15(4), 863-871 (2009) open in new tab
  37. Hörmander, L.: The Analysis of Linear Partial Differential Operators, II: Differential Operators with Constant Coefficients. A Series of Comprehensive Studies in Mathematics, vol. 257. Springer, Berlin (1983) open in new tab
  38. Kline, M.: Mathematical Thought from Ancient to Modern Times: vols. 1, 2,3, vol. 3. Oxford Univ. Press, Oxford (1990)
  39. Kuhn, T.S.: The Structure of Scientific Revolutions, 3rd edn. Univ. of Chicago Press, Chicago (1996) open in new tab
  40. Kuznetsov, E.N.: Underconstrained Structural Systems. Mechanical Engineering. Springer, New York (1991) open in new tab
  41. Lebedev, L.P., Vorovich, I.I.: Functional Analysis in Mechanics. Springer, New York (2003) open in new tab
  42. Lebedev, L.P., Vorovich, I.I., Gladwell, G.M.L.: Functional Analysis. Applications in Mechanics and Inverse Problems. Solid Mechanics and Its Applications, vol. 100, 2nd edn. Kluwer, New York (2002) open in new tab
  43. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (1972) open in new tab
  44. Mareno, A., Healey, T.J.: Global continuation in second-gradient nonlinear elasticity. SIAM J. Math. Anal. 38(1), 103-115 (2006) open in new tab
  45. Matsuzawa, T.: On quasi-elliptic boundary problems. Trans. Am. Math. Soc. 133(1), 241-265 (1968) open in new tab
  46. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109-124 (1968) open in new tab
  47. Nikol'skii, S.M.: On imbedding, continuation and approximation theorems for differentiable functions of several variables. Russ. Math. Surv. 16(5), 55 (1961) open in new tab
  48. Ohno, M., Shizuta, Y., Yanagisawa, T.: The trace theorem on anisotropic Sobolev spaces. Tohoku Math. J. 46(3), 393-401 (1994) open in new tab
  49. Palamodov, V.P.: Systems of linear differential equations. In: Gamkrelidze, R.V. (ed.) Mathematical Analysis. Progress in Mathematics, pp. 1-35. Springer, Boston (1971) open in new tab
  50. Placidi, L., Andreaus, U., Della Corte, A., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z. Angew. Math. Phys. 66(6), 3699-3725 (2015) open in new tab
  51. Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J. Eng. Math. 103(1), 1-21 (2017) open in new tab
  52. Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2D models for the description of panto- graphic fabrics. Z. Angew. Math. Phys. 67(5), 121 (2016) open in new tab
  53. Placidi, L., Greco, L., Bucci, S., Turco, E., Rizzi, N.L.: A second gradient formulation for a 2D fabric sheet with inextensible fibres. Z. Angew. Math. Phys. 67(5), 114 (2016) open in new tab
  54. Reda, H., Rahali, Y., Ganghoffer, J.F., Lakiss, H.: Wave propagation in 3D viscoelastic auxetic and textile materials by homogenized continuum micropolar models. Compos. Struct. 141, 328-345 (2016) open in new tab
  55. Rodino, L., Boggiatto, P.: Partial differential equations of multi-quasi-elliptic type. Ann. Univ. Ferrara 45(1), 275-291 (1999)
  56. Scerrato, D., Giorgio, I., Rizzi, N.L.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Z. Angew. Math. Phys. 67(3), 1-19 (2016) open in new tab
  57. Sedov, L.I.: Mathematical methods for constructing new models of continuous media. Russ. Math. Surv. 20(5), 123 (1965) open in new tab
  58. Stillwell, J.: Exceptional objects. Am. Math. Mon. 105(9), 850-858 (1998) open in new tab
  59. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85-112 (1964) open in new tab
  60. Triebel, H.: Theory of Function Spaces III. Monographs in Mathematics, vol. 100. Birkhäuser, Basel (2006) open in new tab
  61. Trinh, D.K., Janicke, R., Auffray, N., Diebels, S., Forest, S.: Evaluation of generalized continuum sub- stitution models for heterogeneous materials. Int. J. Multiscale Comput. Eng. 10(6), 527-549 (2012) open in new tab
  62. Turco, E., Barcz, K., Pawlikowski, M., Rizzi, N.L.: Non-standard coupled extensional and bending bias tests for planar pantographic lattices, part I: numerical simulations. Z. Angew. Math. Phys. 67(5), 122 (2016) open in new tab
  63. Turco, E., Barcz, K., Rizzi, N.L.: Non-standard coupled extensional and bending bias tests for planar pantographic lattices, part II: comparison with experimental evidence. Z. Angew. Math. Phys. 67(123), 1-16 (2016) open in new tab
  64. Turco, E., dell'Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., Liebold, C.: Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence. Mech. Res. Commun. 76, 86-90 (2016) open in new tab
  65. Turco, E., Golaszewski, M., Cazzani, A., Rizzi, N.L.: Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete Lagrangian model. Mech. Res. Commun. 76, 51-56 (2016) open in new tab
  66. Turco, E., Rizzi, N.L.: Pantographic structures presenting statistically distributed defects: numerical in- vestigations of the effects on deformation fields. Mech. Res. Commun. 77, 65-69 (2016) open in new tab
  67. Turro, N.J.: Paradigms lost and paradigms found: examples of science extraordinary and science patho- logical and how to tell the difference. Angew. Chem., Int. Ed. Engl. 39(13), 2255-2259 (2000) open in new tab
  68. Volevich, L.R.: Solubility of boundary value problems for general elliptic systems. Sb. Math. 68(110), 373-416 (1965). (in Russian)
Verified by:
Gdańsk University of Technology

seen 156 times

Recommended for you

Meta Tags