Machine learning-based seismic response and performance assessment of reinforced concrete buildings - Publication - Bridge of Knowledge

Search

Machine learning-based seismic response and performance assessment of reinforced concrete buildings

Abstract

Complexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data points of training dataset for developing data-driven techniques, Incremental Dynamic Analyses (IDAs) were performed considering 165 RC MRFs with two-, to twelve-Story elevations having the bay lengths of 5.0 m, 6.1 m, and 7.6 m assuming near-fault seismic excitations. Then, important structural features were considered in datasets to train and test the ML-based prediction models, which were improved with innovative techniques. The results show that improved algorithms have higher R2 values for estimating the Maximum Interstory Drift Ratio (IDRmax), and two improved algorithms of artificial neural networks and extreme gradient boosting can estimate the Median of IDA curves (M-IDAs) of RC MRFs, which can be used to estimate the seismic limit-state capacity and performance assessment of existing or newly constructed RC buildings. To validate the generality and accuracy of the proposed ML-based prediction model, a five-Story RC building with different input features was used, and the results are promising. Therefore, graphical user interface is introduced as user-friendly tool to help researchers in estimating the seismic limit-state capacity of RC buildings, while reducing the computational cost and analytical efforts.

Citations

  • 9 0

    CrossRef

  • 0

    Web of Science

  • 8 7

    Scopus

Cite as

Full text

download paper
downloaded 82 times
Publication version
Accepted or Published Version
DOI:
Digital Object Identifier (open in new tab) 10.1007/s43452-023-00631-9
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Archives of Civil and Mechanical Engineering no. 23,
ISSN: 1644-9665
Language:
English
Publication year:
2023
Bibliographic description:
Kazemi F., Asgarkhani N., Jankowski R.: Machine learning-based seismic response and performance assessment of reinforced concrete buildings// Archives of Civil and Mechanical Engineering -Vol. 23,iss. 94 (2023), s.94-
DOI:
Digital Object Identifier (open in new tab) 10.1007/s43452-023-00631-9
Sources of funding:
  • Free publication
Verified by:
Gdańsk University of Technology

seen 112 times

Recommended for you

Meta Tags