Mathematical Modeling of Ice Dynamics as a Decision Support Tool in River Engineering - Publication - Bridge of Knowledge

Search

Mathematical Modeling of Ice Dynamics as a Decision Support Tool in River Engineering

Abstract

The prediction of winter flooding is a complicated task since it is affected by many meteorological and hydraulic factors. Typically, information on river ice conditions is based on historical observations, which are usually incomplete. Recently, data have been supplemented by information extracted from satellite images. All the above mentioned factors provide a good background of the characteristics of ice processes, but are not sufficient for a detailed analysis of river ice, which is highly dynamic and has a local extent. The main aim of this paper is to show the possibility of the prediction of ice jams in a river using a mathematical model. The case of the Odra River was used here. Within the Lower and Middle Odra River, the most significant flood risk, in winter conditions, is posed by ice jams created when movable ice is stopped by existing obstacles such as shallow areas in the riverbed, the narrowing of the riverbed, and other obstacles caused as a result of sudden changes of the river current, backwater from sea waters, and north winds, which contribute to the creation of ice jams. This in turn causes the damming of water and flooding of adjacent areas. The DynaRICE model was implemented at two locations along the Odra River, previously selected as ice-prone areas. Also, a thermal simulation of ice cover formation on Lake Dąbie was shown with variable discharge. The results of numerical simulations showed a high risk of ice jamming on the Odra River, created within one day of ice moving downstream. The prediction of the place and timing, as well as the extent, of the ice jam is impossible without the application of a robust mathematical model.

Citations

  • 1 2

    CrossRef

  • 0

    Web of Science

  • 1 3

    Scopus

Cite as

Full text

download paper
downloaded 60 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Water no. 10, edition 9, pages 1 - 15,
ISSN: 2073-4441
Language:
English
Publication year:
2018
Bibliographic description:
Kolerski T.: Mathematical Modeling of Ice Dynamics as a Decision Support Tool in River Engineering// Water. -Vol. 10, iss. 9 (2018), s.1-15
DOI:
Digital Object Identifier (open in new tab) 10.3390/w10091241
Bibliography: test
  1. Wolski, K.; Tymiński, T.; Głuchowska, B. Analysis of ice phenomena hazard on the middle Odra river. Ann. Wars. Univ. Life Sci. SGGW. Land Reclam. 2017, 49, doi:10.1515/sggw-2017-0024. open in new tab
  2. Pawłowski, B. Determinants of change in the duration of ice phenomena on the Vistula River in Toruń. J. Hydrol. Hydromech. 2015, 63, doi:10.1515/johh-2015-0017. open in new tab
  3. Kornaś, M. Ice phenomena in the Warta River in Poznań in 1961-2010. Quaest. Geogr. 2014, 33, doi:10.2478/quageo-2014-0001. open in new tab
  4. Ptak, M.; Choiński, A. Ice phenomena in rivers of the coastal zone (southern Baltic) in the years 1956-2015. Balt. Coast. Zone 2017, 20, 2016-2020. open in new tab
  5. Agafonova, S.A.; Frolova, N.L.; Krylenko, I.N.; Sazonov, A.A.; Golovlyov, P.P. Dangerous ice phenomena on the lowland rivers of European Russia. Nat. Hazards 2017, 88, 171-188, doi:10.1007/s11069-016-2580-x. open in new tab
  6. Takács, K.; Kern, Z. Multidecadal changes in the river ice regime of the lower course of the River Drava since AD 1875. J. Hydrol. 2015, 529, 1890-1900, doi:10.1016/j.jhydrol.2015.01.040. open in new tab
  7. Sabău, D.; Şerban, G.; Kocsis, I.; Stroi, P.; Stroi, R. Winter Phenomena (Ice Jam) on Rivers from the Romanian Upper Tisa Watershed in 2006-2017 Winter Season. In Water Management and the Environment: Case Studies; open in new tab
  8. Zelenakova, M., Ed.; Springer International Publishing: Cham, Switzerland, 2018; Volume 86, pp. 125-174, ISBN 978-3-319-79013-8.
  9. Keve, G. Space-Time Ice Monitoring of the Hungarian Lower-Danube. Period. Polytech. Civ. Eng. 2017, 61, 27-38, doi:10.3311/PPci.9116. open in new tab
  10. Ionita, M.; Badaluta, C.-A.; Scholz, P.; Chelcea, S. Vanishing river ice cover in the lower part of the Danube basin-Signs of a changing climate. Sci. Rep. 2018, 8, 7948, doi:10.1038/s41598-018-26357-w. open in new tab
  11. Magnuson, J.J. Historical Trends in Lake and River Ice Cover in the Northern Hemisphere. Science 2000, 289, 1743-1746, doi:10.1126/science.289.5485.1743. open in new tab
  12. Kokkonen, T.; Leppäranta, M. River Kymijoki ice phenomena and water quality. In Proceedings of the 17th Workshop on the Hydraulics of Ice Covered Rivers, Edmonton, AB, Canada, 21-24 July 2013.
  13. Pavelsky, T.M.; Smith, L.C. Spatial and temporal patterns in Arctic river ice breakup observed with MODIS and AVHRR time series. Remote Sens. Environ. 2004, 93, 328-338, doi:10.1016/j.rse.2004.07.018. open in new tab
  14. Liu, L.; Yan, J. The application of MODIS data on ice flood monitoring of Yellow River. In Proceedings of the MIPPR 2005: SAR and Multispectral Image Processing, Wuhan, China, 3-4 November 2005; Volume 6043, pp. 780-785. open in new tab
  15. Chaouch, N.; Temimi, M.; Romanov, P.; Cabrera, R.; McKillop, G.; Khanbilvardi, R. An automated algorithm for river ice monitoring over the Susquehanna River using the MODIS data: River ice monitoring over Susquehanna River using MODIS imagery. Hydrol. Process. 2014, 28, 62-73, doi:10.1002/hyp.9548. open in new tab
  16. Kraatz, S.; Khanbilvardi, R.; Romanov, P. A Comparison of MODIS/VIIRS Cloud Masks over Ice-Bearing River: On Achieving Consistent Cloud Masking and Improved River Ice Mapping. Remote Sens. 2017, 9, 229, doi:10.3390/rs9030229. open in new tab
  17. Beltaos, S. River Ice Jams; Water Resources Publication: Littleton, CO, USA, 1995; ISBN 978-0-918334-87-9. open in new tab
  18. Beltaos, S.; Prowse, T.D.; Carter, T. Ice regime of the lower Peace River and ice-jam flooding of the Peace- Athabasca Delta. Hydrol. Process. 2006, 20, 4009-4029, doi:10.1002/hyp.6417. open in new tab
  19. Derecki, J.A.; Quinn, F.H. Record St. Clair River Ice Jam of 1984. J. Hydraul. Eng. 1986, 112, 1182-1193, doi:10.1061/(ASCE)0733-9429(1986)112:12(1182). open in new tab
  20. Shen, H.T.; Gao, L.; Kolerski, T.; Liu, L. Dynamics of Ice Jam Formation and Release. J. Coast. Res. 2008, 52, 25-32, doi:10.2112/1551-5036-52.sp1.25. open in new tab
  21. Shen, H.T.; Lu, S.; Crissman, R.D. Numerical simulation of ice transport over the Lake Erie-Niagara River ice boom. Cold Reg. Sci. Technol. 1997, 26, 17-33, doi:10.1016/S0165-232X(97)00005-0. open in new tab
  22. Lu, S.; Shen, H.T.; Crissman, R.D. Numerical Study of Ice Jam Dynamics in Upper Niagara River. J. Cold Reg. Eng. 1999, 13, 78-102, doi:10.1061/(ASCE)0887-381X(1999)13:2(78). open in new tab
  23. Knack, I.; Shen, H.T.; Huang, F. Numerical model study on ice impact on Lake Superior outflow limit. Can. J. Civ. Eng. 2015, 42, 656-664, doi:10.1139/cjce-2014-0276. open in new tab
  24. Kandamby, A.; Jayasundara, N.; Shen, H.T.; Deyhle, C. A numerical river ice model for Elbe River. In Proceedings of the 20th IAHR International Symposium on Ice, Lahti, Finland, Lahti, 14-17 June 2010; University of Helsinki: Helsinki, Finland.
  25. Kolerski, T.; Shen, H.T.; Kioka, S. A Numerical Model Study on Ice Boom in a Coastal Lake. J. Coast. Res. 2013, 291, 177-186, doi:10.2112/JCOASTRES-D-12-00236.1. open in new tab
  26. Fu, C.; Popescu, I.; Wang, C.; Mynett, A.E.; Zhang, F. Challenges in modelling river flow and ice regime on the Ningxia-Inner Mongolia reach of the Yellow River, China. Hydrol. Earth Syst. Sci. 2014, 18, 1225-1237, doi:10.5194/hess-18-1225-2014. open in new tab
  27. Carson, R.; Beltaos, S.; Groeneveld, J.; Healy, D.; She, Y.; Malenchak, J.; Morris, M.; Saucet, J.-P.; Kolerski, T.; Shen, H.T. Comparative testing of numerical models of river ice jams. Can. J. Civ. Eng. 2011, 38, 669-678, doi:10.1139/l11-036. open in new tab
  28. Shen, H.T. Mathematical modeling of river ice processes. Cold Reg. Sci. Technol. 2010, 62, 3-13. open in new tab
  29. Pariset, E.; Hausser, R.; Gagnon, A. Formation of Ice Covers and Ice Jams in Rivers. J. Hydraul. Div. 1966, 92, 1-24. open in new tab
  30. Lindenschmidt, K.-E.; Huokuna, M.; Burrell, B.C.; Beltaos, S. Lessons learned from past ice-jam floods concerning the challenges of flood mapping. Int. J. River Basin Manag. 2018, 1-13, doi:10.1080/15715124.2018.1439496. open in new tab
  31. Carstensen, D. Ice conditions and ice forces. In Proceedings of the Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, Darmstadt, Hesse, Germany, 24-30 August 2008; pp. 283-287.
  32. Mokwa, M.; Tymiński, T. Ice phenomena in Wroclaw Waterway Junction. In Hydraulic and Hydrological Aspects of Floods in the Vistula and Oder Catchments in 2010;
  33. Kałuża, T., Ed.; Bogucki Press: Poznań, Poland, 2013; pp. 107-122, ISBN 978-83-7986-007-4. open in new tab
  34. Girjatowicz, J.P. The North Atlantic Oscillation influence on the Odra river estuary hydrological conditions. Estua. Coast. Shelf Sci. 2007, 74, 395-402, doi:10.1016/j.ecss.2007.04.037. open in new tab
  35. Zaleski, J. Project operations manual Odra-Vistula Flood Management; Project Cooperation Unit: Wroclaw, Poland, 2015.
  36. UNECE. Map of the European Inland Waterway Network; UNECE: Swizerland, Geneva, 2012. open in new tab
  37. Kreft, A. Ice breaking operation on Lower Odra River in winter season 2010/2011. Logistyka 2011, 6, 4837- 4850.
  38. Kreft, A.; Parzonka, W. Issues related to the modernization of river regulation structures on the border section of the Lower Odra river. Infrastruct. Ecol. Rural Areas 2007, 4/2, 123-134.
  39. Tuthill Andrew, M. Structural Ice Control: A Review. J. Cold Reg. Eng. 1998, 12, 33-51, doi:10.1061/(ASCE)0887-381X(1998)12:2(33). open in new tab
  40. Ashton, G.D. River ice suppression by side channel discharge of warm water. In Preprints: IAHR International Symposium on Ice, Quebec, 1981: Textes Preliminaires: AIRH Symposium International Sur la Glace L'AIRH, Quebec, 1981; Université Laval: Quebec City, Canada, 1981; p. 71. open in new tab
  41. Ashton, G.D. River and Lake Ice Engineering; Water Resources Publication: Littleton, CO, USA, 1986; ISBN 0- 918334-59-4. open in new tab
  42. Wang, T.; Guo, X.; Fu, H.; Guo, Y.; Peng, X.; Wu, Y.; Li, J.; Xia, Y. Effects of Water Depth and Ice Thickness on Ice Cover Blasting for Ice Jam Flood Prevention: A Case Study on the Heilong River, China. Water 2018, 10, 700, doi:10.3390/w10060700. open in new tab
  43. Shen, H.T. River Ice Processes. In Advances in Water Resources Management; Handbook of Environmental Engineering; Springer: Cham, Switzerland, 2016; pp. 483-530, ISBN 978-3-319-22923-2. open in new tab
  44. Shen, H.T.; Su, J.; Liu, L. SPH Simulation of River Ice Dynamics. J. Comput. Phys. 2000, 165, 752-770, doi:10.1006/jcph.2000.6639. open in new tab
  45. Kundzewicz, Z.W.; Szamalek, K.; Kowalczak, P. The great flood of 1997 in Poland. Hydrol. Sci. J. 1999, 44, 855-870. open in new tab
  46. Kolerski, T. Ice cover progression due to flow regulation at the Wloclawek dam. Acta Sci. Polonorum Formatio Circumiectus 2015, 14, 229-240. open in new tab
  47. Kolerski, T.; Shen, H.T. Possible effects of the 1984 St. Clair River ice jam on bed changes. Can. J. Civ. Eng. 2015, 42, 696-703, doi:10.1139/cjce-2014-0275. open in new tab
  48. Kolerski, T. Modeling of ice phenomena in the mouth of the Vistula River. Acta Geophys. 2014, 62, 893-914, doi:10.2478/s11600-014-0213-x. open in new tab
  49. Deyhle, C. A Numerical Model for Ice Simulation and Forecasting on Elbe River. WasserWirtschaft 2014, 104, 12-17, doi:10.1365/s35147-014-1210-3. open in new tab
Verified by:
Gdańsk University of Technology

seen 142 times

Recommended for you

Meta Tags