Meso-mechanical modelling of damage in concrete using discrete element method with porous ITZs of defined width around aggregates. - Publication - Bridge of Knowledge

Search

Meso-mechanical modelling of damage in concrete using discrete element method with porous ITZs of defined width around aggregates.

Abstract

Artykuł omawia wyniki obliczeń numerycznych pękania dla betonu stosując metodę elementów dyskretnych. Beton był opisany jako materiał 4-fazowy i był poddany zginaniu. W obliczeniach uwzględniono strefy ITZ o skończonej szerokości dookoła wszystkich ziaren kruszywa. Nacisk położono na przebieg mikropęknięć przy kruszywie. Wyniki porównano bezpośrednio z doświadczeniami. Obliczenia wykonano także dla szorstkich ziaren kruszywa. Wyniki zaprezentowane w artykule oferują nową perspektywę w zrozumieniu procesu powstawanie pęknięć w obciążonym betonie.

Citations

  • 6 0

    CrossRef

  • 0

    Web of Science

  • 6 1

    Scopus

Cite as

Full text

download paper
downloaded 94 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
ENGINEERING FRACTURE MECHANICS no. 231,
ISSN: 0013-7944
Language:
English
Publication year:
2020
Bibliographic description:
Nitka M., Tejchman-Konarzewski A.: Meso-mechanical modelling of damage in concrete using discrete element method with porous ITZs of defined width around aggregates.// ENGINEERING FRACTURE MECHANICS -Vol. 231, (2020), s.107029-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.engfracmech.2020.107029
Bibliography: test
  1. Bentz DP, Stutzman PE, Garboczi EJ. Cem Conc Res 1992;22(5):891-902. open in new tab
  2. Scrivener KL, Nemati KM. The percolation of pore space in the cement paste/aggregate interfacial zone of concrete. Cem Concr Res 1996;26:35-40. open in new tab
  3. Scrivener KL, Crumbie AK, Laugesen P. The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Sci 2004;12:411-21. open in new tab
  4. Bentur A, Alexander MG. A review of the work of the RILEM TC 159-ETC: engineering of the interfacial transition zone in cementitious composites. Mater Struct 2000;33(2):82-7. open in new tab
  5. Lyu K, Garboczi EJ, She W, Miao C. The effect of rough vs. smooth aggregate surfaces on the characteristics of the interfacial transition zone. Cem Concr Compos 2019;99:49-61. open in new tab
  6. Li K, Stroeven P, Stroeven M, Sluys LJ. A numerical investigation into the influence of the interfacial transition zone on the permeability of partially saturated cement paste between aggregate surfaces. Cem Concr Res 2017;102:99-108. open in new tab
  7. Li K, Stroeven P, Stroeven M, Sluys LB. Effects of technological parameters on permeability estimation of partially saturated cement paste by a DEM approach. Cem Concr Compos 2017;84:222-31. open in new tab
  8. Delagrave A, Bigas JP, Olivier J, Marchand M, Pigeon M. Influence of the interfacial zone on the chloride diffusivity of mortars. Adv Cem Based Mater 1997;5:86-92. open in new tab
  9. Schwartz LM, Garboczi EJ, Bentz DP. Interfacial transport in porous media: application to DC electrical conductivity of mortars. J Appl Phys 1995;78:5898-908. open in new tab
  10. Krzaczek M, Nitka M, Tejchman J. Investigations of capillary pressure driven water flow in concrete using coupled DEM/CFD approach. Int. Conference Framcos 2019, Bayonne, 23-26.06.2019. open in new tab
  11. Akçaoglu T, Tokyay M, Çelik T. Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression. Cem Concr Compos 2004;26(6):633-8. open in new tab
  12. Skarżyński L, Nitka M, Tejchman J. Modelling of concrete fracture at aggregate level using FEM and DEM based on x-ray µCT images of internal structure. Eng Fract Mech 2015;10(147):13-35. open in new tab
  13. Nitka M, Tejchman J. A three-dimensional meso scale approach to concrete fracture based on combined DEM with X-ray μCT images. Cem Concr Res 2018;107:11-29. open in new tab
  14. Gitman IM, Askes H, Sluys LJ. Coupled-volume multi-scale modelling of quasi-brittle material. Eur J Mech A/Solids 2008;27:302-27. open in new tab
  15. Skarżyński L, Tejchman J. Calculations of fracture process zones on meso-scale in notched concrete beams subjected to three-point bending. Eur J Mech A/Solids 2016;29(4):746-60. open in new tab
  16. Benkemoun N, Hautefeuille M, Colliat JB, Ibrahimbegovic A. Failure of heterogeneous materials: 3D meso-scale FE models with embedded discontinuities. Int J Numer Meth Eng 2010;82:1671-88. open in new tab
  17. Kim SM, Abu Al-Rub RK. Meso-scale computational modeling of the plastic-damage response of cementitious composites. Cem Concr Res 2011;41:339-58. open in new tab
  18. Shahbeyk S, Hosseini M, Yaghoobi M. Mesoscale finite element prediction of concrete failure. Comput Mater Sci 2011;50(7):1973-90. open in new tab
  19. Skarżyński L, Tejchman J. Modelling the effect of composition on the tensile properties of concrete, Understanding the tensile properties of concrete (edited by Jaap Weerheijm). Woodhead Publishing Limited, 2013. p. 52-97. open in new tab
  20. Ren W, Yang Z, Sharma R, Zhang Ch, Withers PJ. Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete. Eng Fract Mech 2015;133:24-39. open in new tab
  21. Trawiński W, Bobiński J, Tejchman J. Two-dimensional simulations of concrete at aggregate level with cohesive elements based on x-ray μCT images. Eng Fract Mech 2016;168:201-26. open in new tab
  22. Trawiński W, Tejchman J, Bobiński J. A three-dimensional meso-scale approach with cohesive elements to concrete fracture based on x-ray micro-CT images. Eng Fract Mech 2018;189:27-50. open in new tab
  23. Jin L, Xu J, Zhang R, Du X. Numerical study on the impact performances of reinforced concrete beams: a mesoscopic simulation method. Eng Fail Anal 2017;80:141-63. open in new tab
  24. Suchorzewski J, Tejchman J, Nitka M. Discrete element method simulations of fracture in concrete under uniaxial compression based on its real internal structure. Int J Damage Mech 2018;27(4):578-607. open in new tab
  25. Lilliu G, van Mier JGM. 3D lattice type fracture model for concrete. Eng Fract Mech 2003;70:927-41. open in new tab
  26. Kozicki J, Tejchman J. Modelling of fracture processes in concrete using a novel lattice model. Granular Matter 2008;10:377-88. open in new tab
  27. He H, Guo ZQ, Stroeven P, Stroeven M, Sluys LJ. Influence of particle packing on elastic properties of concrete. In: Proc First International Conference on Computational Technologies in Concrete Structures (CTCS'09), Jeju, Korea, 2009: 1177-1197. open in new tab
  28. Zheng JJ, Guo ZQ, Pan XD, Stroeven P, Sluys LJ. ITZ volume fraction in concrete with spheroidal aggregate particles and application: Part I. Numerical algorithm. Mag Concr Res 2011;63:473-82. open in new tab
  29. Nitka M, Tejchman J. Modelling of concrete behaviour in uniaxial compression and tension with DEM. Granular Matter 2015;17(1):145-64. open in new tab
  30. Suchorzewski J, Tejchman J, Nitka M. Experimental and numerical investigations of concrete behaviour at meso-level during quasi-static splitting tension. Theor Appl Fract Mech 2018;96:720-39. open in new tab
  31. Hashin Z, Monteiro PJM. An inverse method to determine the elastic properties of the interphase between the aggregate and the cement paste. Cem Concr Res 2002;32:1291-300. open in new tab
  32. Ramesh G, Sotelino ED, Chen WF. Effect of transition zone on elastic moduli of concrete materials. Cem Concr Res 1996;26:611-22. open in new tab
  33. Garboczi EJ, Bentz DP. Analytical formulas for interfacial transition zone properties. Adv Cem Based Mater 1997;6:99-108. open in new tab
  34. Nadeau JC. A multiscale model for effective moduli of concrete incorporating ITZ water-cement ratio gradients, aggregate size distributions, and entrapped voids. Cem Concr Res 2003;33:103-13. open in new tab
  35. Zouaoui R, Miled K, Limam O, Beddey A. Analytical prediction of aggregates' effects on the ITZ volume fraction and Young's modulus of concrete. Int J Numer Anal Meth Geomech 2017;41:976-93. open in new tab
  36. Pichler B, Hellmich C. Upscaling quasi-brittle strength of cement paste and mortar: a multi-scale engineering mechanics model. Cem Concr Res 2011;41:467-76. open in new tab
  37. Königsberger M, Hlobil M, Delsaute B, Staquet S, Hellmich Ch, Pichler B. Hydrate failure in ITZ governs concrete strength: a micro-to-macro validated en- gineering mechanics model. Cem Concr Res 2018;103:77-94. open in new tab
  38. Kozicki J, Donzé FV. A new open-source software developer for numerical simulations using discrete modeling methods. Comput Methods Appl Mech Eng 2008;197:4429-43. open in new tab
  39. Šmilauer V, Chareyre B Yade. DEM formulation. Manual 2011. open in new tab
  40. Skarżyński L, Marzec I, Tejchman J. Fracture evolution in concrete compressive fatigue experiments based on X-ray micro-CT images. Int J Fatigue 2019;122:256-72. open in new tab
  41. Skarzynski L, Tejchman J. Experimental investigations of fracture process in concrete by means of x-ray micro-computed tomography. Strain 2016;52:26-45. open in new tab
  42. Königsberger M, Pichler B, Hellmich Ch. Micromechanics of ITZ-aggregate interaction in concrete Part II: Strength upscaling. J. Am. Ceram. Soc. 2014;97:543-51. open in new tab
  43. Lagerblad B, Kjellsen KO. Normal and high strength concretes with conventional aggregates. Engineering and transport properties of the interfacial transition zone in cementitious composites -state-of-the-art report of RILEM TC 159-ETC and 163-TPZ. RILEM Publications SARL 1999:53-70.
  44. Bonifazia G, Capobiancoa G, Serrantia S, Eggimannb M, Wagnerc E, Di Maiod F, Lotfid S. The ITZ in concrete with natural and recycled aggregates: Study of microstructures based on image and SEM analysis. In: 15th Euroseminar on Microscopy Applied to Building Materials, Delft, The Netherlands; 2015. p. 17-19.
  45. Xie Y, Corr DJ, Jin F, Zhoua H, Shah SP. Experimental study of the interfacial transition zone (ITZ) of model rock-filled concrete (RFC). Cem Concr Compos 2015;55:223-31. open in new tab
  46. Mondal P, Shah SP, Marks LD. Nanoscale characterization of cementitious materials. ACI Mater J 2008;105(2):174-9. open in new tab
  47. Xiao J, Li W, Suc Z, Lange DA, Shah SP. Properties of interfacial transition zones in recycled aggregate concrete testes by nanoindentation. Cem Concr Compos 2013;37:276-92. open in new tab
  48. Saez del Bosque IF, Zhu W, Howind T, Matías A, Sanchez de Rojas MI, Medina C. Properties of interfacial transition zones (ITZs) in concrete containing recycled mixed aggregate. Cem Concr Compos 2017;81:25-34. open in new tab
  49. Constantinides G, Ulm FJ. The nanogranular nature of C-S-H. J Mech Phys Solids 2007;55(1):64-90. open in new tab
  50. Elsharief A, Cohen MD, Olek J. Influence of aggregate size, water cement ratio and age on the microstructure of the interfacial transition zone. Cem Concr Res 2003;33(11):837-49. open in new tab
  51. Jia Z, Han Y, Zhang Y, Qiu C, Hu C, Li Z. Quantitative characterization and elastic properties of interfacial transition zone around coarse aggregate in concrete. Journal Wuhan Univ Technol-Mater Sci 2013;32(4). open in new tab
  52. Gao Y, Schutter GD, Ye G, et al. The ITZ microstructure, thickness and porosity in blended cementitious composite: effects of curing age, water to binder ratio and aggregate content. Compos B Eng 2014;60(4):1-13. open in new tab
  53. Wang JA, Lubliner J, Monteiro PJM. Effect of ice formation on the elastic moduli of cement paste and mortar. Cem Concr Res 1998;18:874-85. open in new tab
  54. Caliskan S. Aggregate/mortar interface: influence of silica fume at the micro-and macro-level. Cem Concr Compos 2003;25:557-64. open in new tab
  55. Alexander MG. Two experimental techniques for studying the effects of the interfacial zone between cement paste and rock. Cem Concr Res 1993;23:567-75. open in new tab
  56. Tread U, Buyukozturk O. Size effect and influence of aggregate roughness in interface fracture of concrete composites. ACI Mater J 1998;95(4):331-8. open in new tab
  57. Gu XL, Hong L, Wang ZL, Lin F. Experimental study and application of mechanical properties for the interface between cobblestone aggregate and mortar in concrete. Constr Build Mater 2013;46:156-66. open in new tab
  58. Rao GA, Prasad BKR. Influence of type of aggregate and surface roughness on the interface fracture properties. Mater Struct 2004;37(5):328-33.
  59. Hong L, Gu X, Lin F. Influence of aggregate surface roughness on mechanical properties of interface and concrete. Constr Build Mater 2014;65:338-49. open in new tab
  60. Skarżyński L, Tejchman J. Experimental investigations of damage evolution in concrete during bending by continuous micro-CT scanning. Mater Charact 2019;154:40-52. open in new tab
  61. Suchorzewski J, Tejchman J, Nitka M, Bobiński J. Meso-scale analyses of size effect in brittle materials using DEM. Granular Matter 2019;21(9):1-19. open in new tab
  62. Kahagalage S, Tordesillas A, Nitka M, Tejchman J. Of cuts and cracks: data analytics on constrained graphs for early prediction of failure in cementitious materials. Proc Powders Grains EPJ Web of Conferences 2017;140. https://doi.org/10.1051/epjconf/201714008012. open in new tab
  63. Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Geotechnique 1979;29:47-65. open in new tab
  64. Kozicki J, Tejchman J, Mróz Z. Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granular Matter 2012;14:457-68. open in new tab
  65. Kozicki J, Niedostatkiewicz M, Tejchman J, Mühlhaus HB. Discrete modelling results of a direct shear test for granular materials versus FE results. Granular Matter 2013;15(5):607-27. open in new tab
  66. Kozicki J, Tejchman J, Műhlhaus HB. Discrete simulations of a triaxial compression test for sand by DEM. Int J Num Anal Methods Geom 2014;38:1923-52. open in new tab
  67. Nitka M, Tejchman J, Kozicki J, Leśniewska D. DEM analysis of micro-structural events within granular shear zones under passive earth pressure conditions. Granular Matter 2015;17(3):325-43. open in new tab
  68. Kozicki J, Tejchman J. Relationship between vortex structures and shear localization in 3D granular specimens based on combined DEM and Helmholtz-Hodge decomposition. Granular Matter 2018;20(48):1-24. open in new tab
  69. Ergenzinger C, Seifried R, Eberhard PA. Discrete element model to describe failure of strong rock in uniaxial compression. Granular Matter 2011;22(4):341-64. open in new tab
  70. Cundall PA, Hart R. Numerical modelling of discontinua. Eng Computat 1992;9:101-13. open in new tab
  71. Dupray F, Malecot Y, Daudeville L, Buzaud EA. Mesoscopic model for the behaviour of concrete under high confinement. Int J Numer Anal Meth Geomech 2009;33:1407-23. open in new tab
  72. Krzaczek M, Kozicki J, Nitka M, Tejchman J. Simulations of hydro-fracking in rock mass at meso-scale using fully coupled DEM/CFD approach. Acta Geotech 2020;15(2):297-324. https://doi.org/10.1007/s11440-019-00799-6. open in new tab
Verified by:
Gdańsk University of Technology

seen 107 times

Recommended for you

Meta Tags