Abstract
In this work, thin films (~1000 nm) of a pure MnCo2O4 spinel together with its partially substituted derivatives (MnCo1.6Cu0.2Fe0.2O4, MnCo1.6Cu0.4O4, MnCo1.6Fe0.4O4) were prepared by spray pyrolysis and were evaluated for electrical conductivity. Doping by Cu increases the electrical conductivity, whereas doping by Fe decreases the conductivity. For Cu containing samples, rapid grain growth occurs and these samples develop cracks due to a potentially too high thermal expansion coefficient mismatch to the support. Samples doped with both Cu and Fe show high electrical conductivity, normal grain growth and no cracks. By co-doping the Mn, Co spinel with both Cu and Fe, its properties can be tailored to reach a desired thermal expansion coefficient/electrical conductivity value.
Citations
-
2 2
CrossRef
-
0
Web of Science
-
2 3
Scopus
Authors (4)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/cryst7070185
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
Crystals
no. 7,
edition 7,
ISSN: 2073-4352 - Language:
- English
- Publication year:
- 2017
- Bibliographic description:
- Grudzień D., Molin S., Hendriksen P. V., Jasiński P.: Microstructure and Electrical Properties of Fe,Cu Substituted (Co,Mn)3O4 Thin Films// Crystals. -Vol. 7, iss. 7 (2017), s.185-
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/cryst7070185
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 100 times
Recommended for you
Multilayer coatings based on cerium oxide and manganese cobaltite spinel for Crofer22APU SOC interconnects
- E. Zanchi,
- J. Ignaczak,
- G. Cempura
- + 3 authors