Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline - Publication - Bridge of Knowledge

Search

Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline

Abstract

A microwave method was used for the synthesis of TiO2-CuO oxide systems. A detailed investigation was made of the effect of the molar ratio of components (TiO2:CuO=9:1, 7:3, 5:5, 3:7, 1:9) on the crystalline structure and morphology. Transmission electron microscopy (TEM) confirmed the presence of octahedral and rod-shaped titania particles and sheet copper(II) oxide particles; moreover, HRTEM analysis indicated the presence of a heterojunction between TiO2 and CuO. The synthesized materials were analyzed by X-ray diffraction (XRD) and Raman spectroscopy, and two crystalline forms (anatase and monoclinic CuO) were detected. The key element of the work was to determine the photocatalytic activity of the obtained binary oxide systems in the degradation of tetracycline. Photo-oxidation tests proved that the binary oxide materials (especially the (9)TiO2-(1)CuO and (7)TiO2-(3)CuO samples) demonstrate high photocatalytic activity in the decomposition of tetracycline (95% after 90 min irradiation) compared with the reference titania samples. Furthermore, a Z-scheme heterojunction photocatalytic process mechanism was proposed. Another important part of the work was the determination of tetracycline photodegradation products using the HPLC/MS technique

Citations

  • 1 0 8

    CrossRef

  • 0

    Web of Science

  • 1 0 4

    Scopus

Authors (10)

Cite as

Full text

download paper
downloaded 237 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
APPLIED SURFACE SCIENCE pages 1 - 15,
ISSN: 0169-4332
Language:
English
Publication year:
2020
Bibliographic description:
Kubiak A., Bielan Z., Kubacka M., Gabała E., Zgoła-Grześkowiak A., Janczarek M., Zalas M., Zielińska-Jurek A., Siwińska-Ciesielczyk K., Jesionowski T.: Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline// APPLIED SURFACE SCIENCE -,iss. 520 (2020), s.1-15
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.apsusc.2020.146344
Bibliography: test
  1. M. Lilenberg, S. Yurchenko, K. Kipper, K. Herodes, V. Pihl, K. Sepp, R. Lohmus, L. Nei, Simultaneous determination of fluoroquinolones, sulfonamides and tetra- cyclines in sewage sludge by pressurized liquid extraction and liquid chromato- graphy electrospray ionization-mass spectrometry, J. Chromatogr. A. 1216 (2009) 5949-5954, https://doi.org/10.1016/j.chroma.2009.06.029. open in new tab
  2. S. Fekadu, E. Alemayehu, R. Dewil, B. Van der Bruggen, Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge, Sci. Total Environ. 654 (2019) 324-337, https://doi.org/10.1016/j. scitotenv.2018.11.072. open in new tab
  3. J. Lyu, Z. Hu, Z. Li, M. Ge, Removal of tetracycline by BiOBr microspheres with oxygen vacancies: Combination of adsorption and photocatalysis, J. Phys. Chem. Solids. 129 (2019) 61-70, https://doi.org/10.1016/j.jpcs.2018.12.041. open in new tab
  4. J. Martín, M.D. Camacho-Muñoz, J.L. Santos, I. Aparicio, E. Alonso, Distribution and temporal evolution of pharmaceutically active compounds alongside sewage sludge treatment. Risk assessment of sludge application onto soils, J. Environ. Manage. 102 (2012) 18-25, https://doi.org/10.1016/j.jenvman.2012.02.020. open in new tab
  5. L. Pasquini, J.F. Munoz, M.N. Pons, J. Yvon, X. Dauchy, X. France, N.D. Le, C. France-Lanord, T. Görner, Occurrence of eight household micropollutants in urban wastewater and their fate in a wastewater treatment plant, Statistical Evaluation, Sci. Total Environ. 481 (2014) 459-468, https://doi.org/10.1016/j. scitotenv.2014.02.075. open in new tab
  6. T. Deblonde, C. Cossu-Leguille, P. Hartemann, Emerging pollutants in wastewater: A review of the literature, Int. J. Hyg. Environ. Health. 214 (2011) 442-448, https://doi.org/10.1016/j.ijheh.2011.08.002. open in new tab
  7. H.B. Quesada, A.T.A. Baptista, L.F. Cusioli, D. Seibert, C. de Oliveira Bezerra, R. Bergamasco, Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review, Chemosphere 222 (2019) 766-780, https://doi.org/10.1016/j.chemosphere.2019.02.009. open in new tab
  8. W. Peysson, E. Vulliet, Determination of 136 pharmaceuticals and hormones in sewage sludge using quick, easy, cheap, effective, rugged and safe extraction fol- lowed by analysis with liquid chromatography-time-of-flight-mass spectrometry, J. Chromatogr. A. 1290 (2013) 46-61, https://doi.org/10.1016/j.chroma.2013.03. 057. open in new tab
  9. J.L. Liu, M.H. Wong, Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China, Environ. Int. 59 (2013) 208-224, https://doi.org/10.1016/j.envint.2013.06.012. open in new tab
  10. M. Topal, E.I. Arslan Topal, Investigation of tetracycline and degradation products in Euphrates river receiving outflows of trout farms, Aquac. Res. 47 (2016) 3837-3844, https://doi.org/10.1111/are.12834. open in new tab
  11. Y. Zhang, S. Zuo, M. Zhou, L. Liang, G. Ren, Removal of tetracycline by coupling of flow-through electro-Fenton and in-situ regenerative active carbon felt adsorption, Chem. Eng. J. 335 (2018) 685-692, https://doi.org/10.1016/j.cej.2017.11.012. open in new tab
  12. J. Yu, J. Kiwi, I. Zivkovic, H.M. Rønnow, T. Wang, S. Rtimi, Quantification of the local magnetized nanotube domains accelerating the photocatalytic removal of the emerging pollutant tetracycline, Appl. Catal. B Environ. 248 (2019) 450-458, https://doi.org/10.1016/j.apcatb.2019.02.046. open in new tab
  13. G.M. Islam, K.A. Gilbride, The effect of tetracycline on the structure of the bacterial community in a wastewater treatment system and its effects on nitrogen removal, J. Hazard. Mater. 371 (2019) 130-137, https://doi.org/10.1016/j.jhazmat.2019.02. 032. open in new tab
  14. J.D. Toth, Y. Feng, Z. Dou, Veterinary antibiotics at environmentally relevant concentrations inhibit soil iron reduction and nitrification, Soil Biol. Biochem. 43 (2011) 2470-2472, https://doi.org/10.1016/j.soilbio.2011.09.004. open in new tab
  15. H. Zhang, P. Liu, Y. Feng, F. Yang, Fate of antibiotics during wastewater treatment and antibiotic distribution in the effluent-receiving waters of the Yellow Sea, northern China, Mar. Pollut. Bull. 73 (2013) 282-290, https://doi.org/10.1016/j. marpolbul.2013.05.007. open in new tab
  16. P. Guerra, M. Kim, A. Shah, M. Alaee, S.A. Smyth, Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treat- ment processes, Sci. Total Environ. 473-474 (2014) 235-243, https://doi.org/10. 1016/j.scitotenv.2013.12.008. open in new tab
  17. K.G. Karthikeyan, M.T. Meyer, Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA, Sci. Total Environ. 361 (2006) 196-207, https://doi. org/10.1016/j.scitotenv.2005.06.030. open in new tab
  18. J. Cao, Z. Xiong, B. Lai, Effect of initial pH on the tetracycline (TC) removal by zero- valent iron: Adsorption, oxidation and reduction, Chem. Eng. J. 343 (2018) 492-499, https://doi.org/10.1016/j.cej.2018.03.036. open in new tab
  19. M. Janczarek, M. Endo, D. Zhang, K. Wang, E. Kowalska, Enhanced photocatalytic A. Kubiak, et al. Applied Surface Science 520 (2020) 146344
  20. and antimicrobial performance of cuprous oxide/titania: the effect of titania matrix, Materials 11 (2018) 2069, https://doi.org/10.3390/ma11112069. open in new tab
  21. M. Janczarek, E. Kowalska, On the origin of enhanced photocatalytic activity of copper-modified titania in the oxidative reaction systems, Catalysts 7 (2017) 317, https://doi.org/10.3390/catal7110317. open in new tab
  22. C. McCullagh, J.M.C. Robertson, D.W. Bahnemann, P.K.J. Robertson, The applica- tion of TiO 2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: A review, Res. Chem. Intermed. 33 (2007) 359-375, https://doi. org/10.1163/156856707779238775. open in new tab
  23. B. Roose, S. Pathak, U. Steiner, Doping of TiO 2 for sensitized solar cells, Chem. Soc. Rev. 44 (2015) 8326-8349, https://doi.org/10.1039/c5cs00352k. open in new tab
  24. I.P. Parkin, R.G. Palgrave, Self-cleaning coatings, J. Mater. Chem. 15 (2005) 1689-1695, https://doi.org/10.1039/b412803f. open in new tab
  25. H. Wu, Y. Yang, H. Suo, M. Qing, L. Yan, B. Wu, J. Xu, H. Xiang, Y. Li, Effects of ZrO 2 promoter on physic-chemical properties and activity of Co/TiO 2 -SiO 2 Fischer- Tropsch catalysts, J. Mol. Catal. A Chem. 396 (2014) 108-119, https://doi.org/10. 1016/j.molcata.2014.09.024. open in new tab
  26. B. Ohtani, Titania photocatalysis beyond recombination: A critical review, Catalysts 3 (2013) 942-953, https://doi.org/10.3390/catal3040942. open in new tab
  27. M. Fujishima, H. Takatori, H. Tada, Interfacial chemical bonding effect on the photocatalytic activity of TiO 2 -SiO 2 nanocoupling systems, J. Colloid Interface Sci. 361 (2011) 628-631, https://doi.org/10.1016/j.jcis.2011.06.024. open in new tab
  28. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271, https://doi.org/10. 1126/science.1061051. open in new tab
  29. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B 125 (2012) 331-349, https://doi. org/10.1016/j.apcatb.2012.05.036. open in new tab
  30. F. Yang, X. Zhang, Y. Yang, S. Hao, L. Cui, Characteristics and supercapacitive performance of nanoporous bamboo leaf-like CuO, Chem. Phys. Lett. 691 (2018) 366-372, https://doi.org/10.1016/j.cplett.2017.11.047. open in new tab
  31. K. Zhang, Q. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO na- nostructures: Synthesis, characterization, growth mechanisms, fundamental prop- erties, and applications, Prog. Mater. Sci. 60 (2014) 208-237, https://doi.org/10. 1016/j.pmatsci.2013.09.003. open in new tab
  32. S.S. Lee, H. Bai, Z. Liu, D.D. Sun, Novel-structured electrospun TiO 2 /CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater, Water Res. 47 (2013) 4059-4073, https://doi.org/10.1016/j. watres.2012.12.044. open in new tab
  33. S.S. Lee, H. Bai, Z. Liu, D.D. Sun, Optimization and an insightful properties-activity study of electrospun TiO 2 /CuO composite nanofibers for efficient photocatalytic H 2 generation, Appl. Catal. B Environ. 140-141 (2013) 68-81, https://doi.org/10. 1016/j.apcatb.2013.03.033. open in new tab
  34. P. Wang, X. Wen, R. Amal, Y.H. Ng, Introducing a protective interlayer of TiO 2 in Cu 2 O-CuO heterojunction thin film as a highly stable visible light photocathode, RSC Adv. 5 (2015) 5231-5236, https://doi.org/10.1039/c4ra13464h. open in new tab
  35. J. Bandara, C.P.K. Udawatta, C.S.K. Rajapakse, Highly stable CuO incorporated TiO 2 catalyst for photocatalytic hydrogen production from H 2 O, Photochem. Photobiol. Sci. 4 (2005) 857-861, https://doi.org/10.1039/b507816d. open in new tab
  36. S. Qin, F. Xin, Y. Liu, X. Yin, W. Ma, Photocatalytic reduction of CO 2 in methanol to methyl formate over CuO-TiO 2 composite catalysts, J. Colloid Interface Sci. 356 (2011) 257-261, https://doi.org/10.1016/j.jcis.2010.12.034. open in new tab
  37. J.F. de Brito, M.V.B. Zanoni, On the application of Ti/TiO 2 /CuO n-p junction semiconductor: A case study of electrolyte, temperature and potential influence on CO 2 reduction, Chem. Eng. J. 318 (2017) 264-271, https://doi.org/10.1016/j.cej. 2016.08.033. open in new tab
  38. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD, World J. Nano Sci. Eng. 02 (2012) 154-160, https://doi.org/10.4236/wjnse.2012.23020. open in new tab
  39. A. Khorsand Zak, W.H. Abd Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods, Solid State Sci. 13 (2011) 251-256, https://doi.org/10.1016/j.solidstatesciences.2010.11.024. open in new tab
  40. M.I. Dar, A.K. Chandiran, M. Grätzel, M.K. Nazeeruddin, S.A. Shivashankar, Controlled synthesis of TiO 2 nanoparticles and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells, J. Mater. Chem. A. 2 (2014) 1662-1667, https://doi.org/10.1039/c3ta14130f. open in new tab
  41. A.B. Corradi, F. Bondioli, B. Focher, A.M. Ferrari, C. Grippo, E. Mariani, C. Villa, Conventional and microwave-hydrothermal synthesis of TiO 2 nanopowders, J. Am. Ceram. Soc. 88 (2005) 2639-2641, https://doi.org/10.1111/j.1551-2916.2005. 00474.x. open in new tab
  42. G.S. Falk, M. Borlaf, M.J. López-Muñoz, J.C. Fariñas, J.B. Rodrigues Neto, R. Moreno, Microwave-assisted synthesis of TiO 2 nanoparticles: photocatalytic ac- tivity of powders and thin films, J. Nanoparticle Res. 20 (2018) 23, https://doi.org/ 10.1007/s11051-018-4140-7. open in new tab
  43. X. Wang, J. Tian, C. Fei, L. Lv, Y. Wang, G. Cao, Rapid construction of TiO 2 ag- gregates using microwave assisted synthesis and its application for dye-sensitized solar cells, RSC Adv. 5 (2014) 8622-8629, https://doi.org/10.1039/c4ra11266k. open in new tab
  44. D.P. Volanti, D. Keyson, L.S. Cavalcante, A.Z. Simões, M.R. Joya, E. Longo, J.A. Varela, P.S. Pizani, A.G. Souza, Synthesis and characterization of CuO flower- nanostructure processing by a domestic hydrothermal microwave, J. Alloys Compd. 459 (2008) 537-542, https://doi.org/10.1016/j.jallcom.2007.05.023. open in new tab
  45. C. Yang, F. Xiao, J. Wang, X. Su, 3D flower-and 2D sheet-like CuO nanostructures: Microwave-assisted synthesis and application in gas sensors, Sens Actuators, B Chem. 207 (2015) 177-185, https://doi.org/10.1016/j.snb.2014.10.063. open in new tab
  46. G. Qiu, S. Dharmarathna, Y. Zhang, N. Opembe, H. Huang, S.L. Suib, Facile mi- crowave-assisted hydrothermal synthesis of CuO nanomaterials and their catalytic and electrochemical properties, J. Phys. Chem. C. 116 (2012) 468-477, https://doi. org/10.1021/jp209911k. open in new tab
  47. M.C. Mathpal, A.K. Tripathi, M.K. Singh, S.P. Gairola, S.N. Pandey, A. Agarwal, Effect of annealing temperature on Raman spectra of TiO 2 nanoparticles, Chem. Phys. Lett. 555 (2012) 182-186, https://doi.org/10.1016/j.cplett.2012.10.082. open in new tab
  48. K. Phiwdang, S. Suphankij, W. Mekprasart, W. Pecharapa, Synthesis of CuO nano- particles by precipitation method using different precursors, Energy Proc. 34 (2013) 740-745, https://doi.org/10.1016/j.egypro.2013.06.808. open in new tab
  49. L. Zhu, M. Hong, G. Wei, Fabrication of wheat grain textured TiO 2 /CuO composite nano fibers for enhanced solar H 2 generation and degradation performance, Nano Energy 11 (2015) 28-37, https://doi.org/10.1016/j.nanoen.2014.09.032. open in new tab
  50. Q. Shi, G. Ping, X. Wang, H. Xu, J. Li, J. Cui, H. Abroshan, H. Ding, G. Li, CuO/TiO 2 heterojunction composites: An efficient photocatalyst for selective oxidation of methanol to methyl formate, J. Mater. Chem. A. 7 (2019) 2253-2260, https://doi. org/10.1039/c8ta09439j. open in new tab
  51. G. Nagaraju, T. Ramakrishnappa, J.D. Scholten, K. Manjunath, J. Dupont, V.S. Souza, Heterojunction CuO-TiO 2 nanocomposite synthesis for significant photocatalytic hydrogen production, Mater. Res. Express. 3 (2016) 115904, , https://doi.org/10.1088/2053-1591/3/11/115904. open in new tab
  52. E.P. Etape, L.J. Ngolui, J. Fobatendo, D.M. Yufanyi, B.V. Namondo, Synthesis and characterization of CuO, TiO 2 , and CuO-TiO 2 mixed oxide by a modified oxalate route, J. Appl. Chem. 2017 (2017) 4518654, https://doi.org/10.1155/2017/ 4518654. open in new tab
  53. A.M. Cahino, R.G. Loureiro, J. Dantas, V.S. Madeira, P.C. Ribeiro Fernandes, Characterization and evaluation of ZnO/CuO catalyst in the degradation of me- thylene blue using solar radiation, Ceram. Inter. 45 (2019) 13628-13636, https:// doi.org/10.1063/1.4945505. open in new tab
  54. J. Yu, X. Zhao, Q. Zhao, G. Wang, Preparation and characterization of super-hy- drophilic porous TiO 2 coating films, Mater. Chem. Phys. 68 (2001) 253-259, https://doi.org/10.1016/S0254-0584(00)00364-3. open in new tab
  55. S. Rahim, M.S. Ghamsari, S. Radiman, Surface modification of titanium oxide na- nocrystals with PEG, Sci. Iran. 19 (2012) 948-953, https://doi.org/10.1016/j. scient.2012.03.009. open in new tab
  56. M.S. Kim, S.H. Chung, C.J. Yoo, M.S. Lee, I.H. Cho, D.W. Lee, K.Y. Lee, Catalytic reduction of nitrate in water over Pd-Cu/TiO 2 catalyst: Effect of the strong metal- support interaction (SMSI) on the catalytic activity, Appl. Catal. B Environ. 142-143 (2013) 354-361, https://doi.org/10.1016/j.apcatb.2013.05.033. open in new tab
  57. J.O. Olowoyo, M. Kumar, T. Dash, S. Saran, S. Bhandari, U. Kumar, Self-organized copper impregnation and doping in TiO2 with enhanced photocatalytic conversion of H 2 O and CO 2 to fuel, Int. J. Hydrogen Energy. 43 (2018) 19468-19480, https:// doi.org/10.1016/j.ijhydene.2018.08.209. open in new tab
  58. A.A. Dubale, C.J. Pan, A.G. Tamirat, H.M. Chen, W.N. Su, C.H. Chen, J. Rick, D.W. Ayele, B.A. Aragaw, J.F. Lee, Y.W. Yang, B.J. Hwang, Heterostructured Cu 2 O/ CuO decorated with nickel as a highly efficient photocathode for photoelec- trochemical water reduction, J. Mater. Chem. A. 3 (2015) 12482-12499, https:// doi.org/10.1039/c5ta01961c. open in new tab
  59. R. Van Grieken, J. Aguado, M.J. López-Muoz, J. Marugán, Synthesis of size-con- trolled silica-supported TiO 2 photocatalysts, J. Photochem. Photobiol. A Chem. 148 (2002) 315-322, https://doi.org/10.1016/S1010-6030(02)00058-8. open in new tab
  60. K. Zhou, R. Wang, B. Xu, Y. Li, Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes, Nanotechnology. 17 (2006) 3939-3943, https://doi.org/10.1088/0957-4484/17/15/055. open in new tab
  61. L. Zhu, M. Hong, G.W. Ho, Fabrication of wheat grain textured TiO 2 /CuO composite nanofibers for enhanced solar H 2 generation and degradation performance, Nano Energy 11 (2015) 28-37, https://doi.org/10.1016/j.nanoen.2014.09.032. open in new tab
  62. P. Rezaei, M. Rezaei, F. Meshkani, Ultrasound-assisted hydrothermal method for the preparation of the M-Fe 2 O 3 -CuO (M: Mn, Ag, Co) mixed oxides nanocatalysts for low-temperature CO oxidation, Ultrason.-Sonochem. 57 (2019) 212-222, https:// doi.org/10.1016/j.ultsonch.2019.04.042. open in new tab
  63. S. Bhuvaneshwari, N. Gopalakrishnan, Hydrothermally synthesized copper oxide (CuO) superstructures for ammonia sensing, J. Colloid Interface Sci. 480 (2016) 76-84, https://doi.org/10.1016/j.jcis.2016.07.004. open in new tab
  64. S.R. Son, K.S. Go, S.D. Kim, Thermogravimetric analysis of copper oxide for che- mical-looping hydrogen generation, Ind. Eng. Chem. Res. 48 (2009) 380-387, https://doi.org/10.1021/ie800174c. open in new tab
  65. D.A. Svintsitskiy, A.P. Chupakhin, E.M. Slavinskaya, O.A. Stonkus, A.I. Stadnichenko, S.V. Koscheev, A.I. Boronin, Study of cupric oxide nanopowders as efficient catalysts for low-temperature CO oxidation, J. Mol. Catal. A Chem. 368-369 (2013) 95-106, https://doi.org/10.1016/j.molcata.2012.11.015. open in new tab
  66. N. Tamaekong, C. Liewhiran, S. Phanichphant, Synthesis of thermally spherical CuO nanoparticles, J. Nanomater. 2014 (2014) 1-5, https://doi.org/10.1155/2014/ 507978. open in new tab
  67. H. Wang, F. Shadman, Effect of particle size on the adsorption and desorption properties of oxide nanoparticles, AIChE J. 59 (2012) 1502-1510, https://doi.org/ 10.1002/aic.13936. open in new tab
  68. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic perfor- mances, Chem. Soc. Rev. 43 (2014) 5234-5244, https://doi.org/10.1039/ c4cs00126e. open in new tab
  69. W.K. Jo, T.S. Natarajan, Influence of TiO 2 morphology on the photocatalytic effi- ciency of direct Z-scheme g-C 3 N 4 /TiO 2 photocatalysts for isoniazid degradation, Chem. Eng. J. 281 (2015) 549-565, https://doi.org/10.1016/j.cej.2015.06.120. open in new tab
  70. S. Hariganesh, S. Vadivel, D. Maruthamani, M. Kumaravel, B. Paul, N. Balasubramanian, T. Vijayaraghavan, Facile large scale synthesis of CuCr 2 O 4 / CuO nanocomposite using MOF route for photocatalytic degradation of methylene blue and tetracycline under visible light, Appl. Organomet. Chem. 34 (2020) e5365, , https://doi.org/10.1002/aoc.5365. open in new tab
  71. L. Clarizia, D. Spasiano, I. Di Somma, R. Marotta, R. Andreozzi, D.D. Dionysiou, Copper modified-TiO 2 catalysts for hydrogen generation through photoreforming of organics. A short review, Int. J. Hydrogen Energy. 39 (2014) 16812-16831, https:// doi.org/10.1016/j.ijhydene.2014.08.037. open in new tab
  72. J. Yu, Y. Hai, M. Jaroniec, Photocatalytic hydrogen production over CuO-modified titania, J. Colloid Interface Sci. 357 (2011) 223-228, https://doi.org/10.1016/j. jcis.2011.01.101. open in new tab
  73. A. Kubiak, K. Siwińska-Ciesielczyk, J. Goscianska, A. Dobrowolska, E. Gabała, K. Czaczyk, T. Jesionowski, Hydrothermal-assisted synthesis of highly crystalline titania-copper oxide binary systems with enhanced antibacterial properties, Mater. Sci. Eng. C. 104 (2019), https://doi.org/10.1016/j.msec.2019.109839. open in new tab
  74. P. Wang, P.S. Yap, T.T. Lim, C-N-S tridoped TiO 2 for photocatalytic degradation of tetracycline under visible-light irradiation, Appl. Catal. A Gen. 399 (2011) 252-261, https://doi.org/10.1016/j.apcata.2011.04.008. open in new tab
  75. M. Ahmadi, H. Ramezani Motlagh, N. Jaafarzadeh, A. Mostoufi, R. Saeedi, G. Barzegar, S. Jorfi, Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO 2 nano-composite, J. Environ. Manage. 186 (2017) 55-63, https://doi.org/10.1016/j.jenvman.2016.09.088. open in new tab
  76. X.D. Zhu, Y.J. Wang, R.J. Sun, D.M. Zhou, Photocatalytic degradation of tetra- cycline in aqueous solution by nanosized TiO 2 , Chemosphere 92 (2013) 925-932, https://doi.org/10.1016/j.chemosphere.2013.02.066. open in new tab
  77. Y. Shi, Z. Yang, B. Wang, H. An, Z. Chen, H. Cui, Adsorption and photocatalytic degradation of tetracycline hydrochloride using a palygorskite-supported Cu 2 O- TiO 2 composite, Appl. Clay Sci. 119 (2016) 311-320, https://doi.org/10.1016/j. clay.2015.10.033. open in new tab
  78. R.A. Palominos, M.A. Mondaca, A. Giraldo, G. Peñuela, M. Pérez-Moya, H.D. Mansilla, Photocatalytic oxidation of the antibiotic tetracycline on TiO 2 and ZnO suspensions, Catal. Today. 144 (2009) 100-105, https://doi.org/10.1016/j. cattod.2008.12.031. open in new tab
  79. G. Zhang, W. Guan, H. Shen, X. Zhang, W. Fan, C. Lu, H. Bai, L. Xiao, W. Gu, W. Shi, Organic additives-free hydrothermal synthesis and visible-light-driven photo- degradation of tetracycline of WO 3 nanosheets, Ind. Eng. Chem. Res. 53 (2014) 5443-5450, https://doi.org/10.1021/ie4036687. open in new tab
  80. W. Li, H. Ding, H. Ji, W. Dai, J. Guo, G. Du, Photocatalytic degradation of tetra- cycline hydrochloride via a CdS-TiO 2 heterostructure composite under visible light irradiation, Nanomaterials 8 (2018) 415, https://doi.org/10.3390/nano8060415. open in new tab
  81. F. Chen, Q. Yang, J. Sun, F. Yao, S. Wang, Y. Wang, X. Wang, X. Li, C. Niu, D. Wang, G. Zeng, Enhanced photocatalytic degradation of tetracycline by AgI/BiVO 4 het- erojunction under visible-light irradiation: mineralization efficiency and me- chanism, ACS Appl. Mater. Interfaces 8 (2016) 32887-32900, https://doi.org/10. 1021/acsami.6b12278. open in new tab
  82. L. Wang, C. Zhang, R. Cheng, J. Ali, Z. Wang, G. Mailhot, G. Pan, Microcystis aeruginosa synergistically facilitate the photocatalytic degradation of tetracycline hydrochloride and Cr(VI) on PAN/TiO 2 /Ag nanofiber mats, Catalysts 8 (2018) 628, https://doi.org/10.3390/catal8120628. open in new tab
  83. S.J.A. Moniz, J. Tang, Charge transfer and photocatalytic activity in CuO/TiO 2 nanoparticle heterojunctions synthesised through a rapid, one-pot, microwave solvothermal route, ChemCatChem 7 (2015) 1659-1667, https://doi.org/10.1002/ cctc.201500315. open in new tab
  84. M. Buchalska, M. Kobielusz, A. Matuszek, M. Pacia, S. Wojtyła, W. Macyk, On oxygen activation at rutile-and anatase-TiO 2 , ACS Catal. 5 (2015) 7424-7431, https://doi.org/10.1021/acscatal.5b01562. open in new tab
  85. W.R. Siah, H.O. Lintang, M. Shamsuddin, H. Yoshida, L. Yuliati, Masking effect of copper oxides photodeposited on titanium dioxide: Exploring UV, visible, and solar light activity, Catal. Sci. Technol. 6 (2016) 5079-5087, https://doi.org/10.1039/ c6cy00074f. open in new tab
  86. B. Ohtani, Photocatalysis A to Z-What we know and what we do not know in a scientific sense, J. Photochem. Photobiol. C Photochem. Rev. 11 (2010) 157-178, https://doi.org/10.1016/j.jphotochemrev.2011.02.001. open in new tab
  87. F. Amano, O.O. Prieto-Mahaney, Y. Terada, T. Yasumoto, T. Shibayama, B. Ohtani, Decahedral single-crystalline particles of anatase titanium(IV) oxide with high photocatalytic activity, Chem. Mater. 21 (2009) 2601-2603, https://doi.org/10. 1021/cm9004344. open in new tab
  88. S.W. Verbruggen, TiO 2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement, J. Photochem. Photobiol. C Photochem. Rev. 24 (2015) 64-82, https://doi.org/10.1016/j.jphotochemrev. 2015.07.001. open in new tab
  89. Z.W. Kunlei Wang, M. Janczarek, Z. Wei, T. Raja-Mogan, M. Endo-Kimura, T.M. Khedr, B. Ohtani, E. Kowalska, Morphology-and crystalline composition- governed activity of titania-based photocatalysts: overview and perspective, Catalysts 1054 (2019), https://doi.org/10.3390/catal9121054. open in new tab
  90. O. Ola, M.M. Maroto-Valer, Review of material design and reactor engineering on TiO 2 photocatalysis for CO 2 reduction, J. Photochem. Photobiol. C Photochem. Rev. 24 (2015) 16-42, https://doi.org/10.1016/j.jphotochemrev.2015.06.001. open in new tab
  91. M. Rokhmat, E. Wibowo, Khairurrijal Sutisna, M. Abdullah, Performance im- provement of TiO 2 /CuO solar cell by growing copper particle using fix current electroplating method, Proc. Eng. 170 (2017) 72-77, https://doi.org/10.1016/j. proeng.2017.03.014. open in new tab
  92. A.L. Luna, M.A. Valenzuela, C. Colbeau-Justin, P. Vázquez, J.L. Rodriguez, J.R. Avendaño, S. Alfaro, S. Tirado, A. Garduño, J.M. De La Rosa, Photocatalytic degradation of gallic acid over CuO-TiO 2 composites under UV/Vis LEDs irradia- tion, Appl. Catal. A Gen. 521 (2016) 140-148, https://doi.org/10.1016/j.apcata. 2015.10.044. open in new tab
  93. S. Chu, X. Zheng, F. Kong, G. Wu, L. Luo, Y. Guo, H. Liu, Y. Wang, H. Yu, Z. Zou, Architecture of Cu 2 O@TiO 2 core-shell heterojunction and photodegradation for 4- nitrophenol under simulated sunlight irradiation, Mater. Chem. Phys. 129 (2011) 1184-1188, https://doi.org/10.1016/j.matchemphys.2011.06.004. open in new tab
  94. F.Y. Chen, X. Zhang, Y. Bin Tang, X.G. Wang, K.K. Shu, Facile and rapid synthesis of a novel spindle-like heterojunction BiVO4 showing enhanced visible-light-driven photoactivity, RSC Adv. 10 (2020) 5234-5240. doi: 10.1039/c9ra07891f. open in new tab
  95. G. Mano, S. Harinee, S. Sridhar, M. Ashok, A. Viswanathan, Microwave assisted synthesis of ZnO-PbS heterojuction for degradation of organic pollutants under visible light, Sci. Rep. 10 (2020) 1-14, https://doi.org/10.1038/s41598-020- 59066-4. open in new tab
  96. M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, J. Alloys Compd. 494 (2010) 175-189, https://doi.org/10.1016/j.jallcom.2010.01.068. open in new tab
  97. B.A. Roberts, C.R. Strauss, Toward rapid, "green", predictable microwave-assisted synthesis, Acc. Chem. Res. 38 (2005) 653-661, https://doi.org/10.1021/ ar040278m. open in new tab
  98. S. Li, J. Hu, Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms, J. Hazard. Mater. 318 (2016) 134-144, https://doi.org/10.1016/j.jhazmat.2016.05.100. open in new tab
  99. Y. Deng, L. Tang, G. Zeng, J. Wang, Y. Zhou, J. Wang, J. Tang, L. Wang, C. Feng, Facile fabrication of mediator-free Z-scheme photocatalyst of phosphorous-doped ultrathin graphitic carbon nitride nanosheets and bismuth vanadate composites with enhanced tetracycline degradation under visible light, J. Colloid Interface Sci. 509 (2018) 219-234, https://doi.org/10.1016/j.jcis.2017.09.016. open in new tab
  100. A. Kubiak, et al. Applied Surface Science 520 (2020) 146344 open in new tab
Verified by:
Gdańsk University of Technology

seen 164 times

Recommended for you

Meta Tags