Abstract
The design of efficient electrocatalysts for oxygen evolution reaction (OER) is an essential task in developing sustainable water splitting technology for the production of hydrogen. In this work, manganese cobalt spinel oxides with a general formula of MnxCo3-xO4 (x=0, 0.5, 1, 1.5, 2) were synthesised via a soft chemistry method. Non-equilibrium mixed powder compositions were produced, resulting in high electrocatalytic activity. The oxygen evolution reaction was evaluated in an alkaline medium (1 M KOH). It was shown that the addition of Mn (up to x ≤ 1) to the cubic Co3O4 phase results in an increase of the electrocatalytic performance. The lowest overpotential was obtained for the composition designated as MnCo2O4, which exhibited a dual-phase structure (~30% Co3O4 + 70% Mn1.4Co1.6O4): the benchmark current density of 10 mA cm-2 was achieved at the relatively low overpotential of 327 mV. The corresponding Tafel slope was determined to be ~79 mV dec-1. Stabilities of the electrodes were tested for 25 hours, showing degradation of the MnCo2O4 powder, but no degradation, or even a slight activation for other spinels.
Citations
-
4 0
CrossRef
-
0
Web of Science
-
4 0
Scopus
Authors (9)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
no. 45,
pages 14867 - 14879,
ISSN: 0360-3199 - Language:
- English
- Publication year:
- 2020
- Bibliographic description:
- Lankauf K., Cysewska K., Karczewski J., Mielewczyk-Gryń A., Górnicka K., Cempura G., Chen M., Jasiński P., Molin S.: MnxCo3-xO4 spinel oxides as efficient oxygen evolution reaction catalysts in alkaline media// INTERNATIONAL JOURNAL OF HYDROGEN ENERGY -Vol. 45,iss. 29 (2020), s.14867-14879
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.ijhydene.2020.03.188
- Sources of funding:
- Verified by:
- Gdańsk University of Technology
seen 221 times
Recommended for you
Combined effect of nitrogen-doped carbon and NiCo2O4 for electrochemical water splitting
- L. Kubińska,
- M. Szkoda,
- M. Skorupska
- + 4 authors
Investigating BiMeVOx compounds as potential photoelectrochemical and electrochemical materials for renewable hydrogen production
- M. Szkoda,
- M. Skorupska,
- P. Grabowska
- + 2 authors
Exfoliated graphite with spinel oxide as an effective hybrid electrocatalyst for water splitting
- M. Skorupska,
- K. Kowalska,
- M. Tyc
- + 3 authors