Modeling of pharmaceuticals mixtures toxicity with deviation ratio and best-fit functions models - Publication - Bridge of Knowledge

Search

Modeling of pharmaceuticals mixtures toxicity with deviation ratio and best-fit functions models

Abstract

The present study deals with assessment of ecotoxicological parameters of 9 drugs (diclofenac (sodium salt), oxytetracycline hydrochloride, fluoxetine hydrochloride, chloramphenicol, ketoprofen, progesterone, estrone, androstenedione and gemfibrozil), present in the environmental compartments at specific concentration levels, and theirmutual combinations by couples against Microtox® and XenoScreen YES/YAS® bioassays. As the quantitative assessment of ecotoxicity of drug mixtures is an complex and sophisticated topic in the present study we have used two major approaches to gain specific information on themutual impact of twoseparate drugs present in a mixture.The first approach is well documented in many toxicological studies and follows the procedure for assessing three types of models, namely concentration addition (CA), independent action (IA) and simple interaction (SI) by calculation of a model deviation ratio (MDR) for each one of the experiments carried out. The second approach used was based on the assumption that the mutual impact in each mixture of two drugs could be described by a best-fit model function with calculation of weight (regression coefficient or other model parameter) for each of the participants in the mixture or by correlation analysis. It was shown that the sign and the absolute value of the weight or the correlation coefficient could be a reliable measure for the impact of either drug A on drug B or, vice versa, of B on A. Results of studies justify the statement, that both of the approaches show similar assessment of the mode of mutual interaction of the drugs studied. It was found that most of the drug mixtures exhibit independent action and quite few of the mixtures show synergic or dependent action.

Citations

  • 2 2

    CrossRef

  • 0

    Web of Science

  • 2 5

    Scopus

Authors (7)

Cite as

Full text

download paper
downloaded 199 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
SCIENCE OF THE TOTAL ENVIRONMENT no. 571, pages 259 - 268,
ISSN: 0048-9697
Publication year:
2016
Bibliographic description:
Wieczerzak M., Kudłak B., Yotova G., Nedyalkova M., Tsakovski S., Simeonov V., Namieśnik J.: Modeling of pharmaceuticals mixtures toxicity with deviation ratio and best-fit functions models// SCIENCE OF THE TOTAL ENVIRONMENT. -Vol. 571, (2016), s.259-268
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.scitotenv.2016.07.186
Bibliography: test
  1. Altenburger, R., Nendza, M., Schuurmann, G., 2003. Mixture toxicity and its modeling by quantitative structure-activity relationships. Environ. Toxicol. Chem. 22, 1900-1915. open in new tab
  2. Altenburger, R., Walter, H., Grote, M., et al., 2004. What contributes to the combined effect of a complex mixture? Environ. Sci. Technol. 38, 6353-6362. open in new tab
  3. Backhaus, T., 2014. Medicines, shaken and stirred: a critical review on the ecotoxicology of pharmaceutical mixtures. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 369, 20130585. open in new tab
  4. Backhaus, T., Faust, M., 2012. Predictive environmental isk assessment of chemical mix- tures: a conceptual framework. Environ. Sci. Technol. 46, 2564-2573. open in new tab
  5. Bayen, S., Zhang, H., Desai, M.M., Ooi, S.K., Kelly, B.C., 2013. Occurrence and distribution of pharmaceutically active and endocrine disrupting compounds in Singapore's marine environment: influence of hydrodynamics and physical-chemical properties. Envi- ron. Pollut. 182, 1-8. open in new tab
  6. Belden, J.B., Gilliom, R.J., Lydy, M.J., 2007. How well can we predict the toxicity of pesticide mixtures to aquatic life? Integr. Environ. Assess. Manag. 3, 364-372. open in new tab
  7. Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: A Prac- tical Information-Theoretic Approach. Springer Science & Business Media, Fort Collins. open in new tab
  8. Chang, H., Wan, Y., Wu, S., Fan, Z., Hu, J., 2011. Occurrence of androgens and progestogens in wastewater treatment plants and receiving river waters: comparison to estrogens. Water Res. 45, 732-740. open in new tab
  9. Cho, Y.K., Huang, W., Kim, G.Y., Lim, B.S., 2013. Comparison of autologous serum eye drops with different diluents. Curr. Eye Res. 38, 9-17. open in new tab
  10. Fig. 4. The cumulative distribution of model deviation ratios (MDR) for CA and IA models of a) YES+, b) YES−, c) YAS+, d) YAS− test results (results of mixtures with MDR values outside open in new tab
  11. Dawson, D.A., Genco, N., Bensinger, H.M., Guinn, D., Il'Giovine, Z.J., Schultz, T.W., Pöch, G., 2012. Evaluation of an asymmetry parameter for curve-fitting in single-chemical and mixture toxicity assessment. Toxicology 292, 156-161. open in new tab
  12. Dubiella-Jackowska, A., Astel, A., Polkowska, Ż., Staszek, W., Kudłak, B., Namieśnik, J., 2010. Atmospheric and surface water pollution interpretation in the Gdańsk Beltway im- pact range by the use of multivariate analysis. Clean (Weinh) 38, 865-876. open in new tab
  13. Durhan, E.J., Lambright, C., Wilson, V., Butterworth, B.C., Kuehl, D.W., Orlando, E.F., Guillette Jr., L.J., Gray, L.E., Ankley, G.T., 2002. Evaluation of androstenedione as an an- drogenic component of river water downstream of a pulp and paper mill effluent. En- viron. Toxicol. Chem. 21, 1973-1976. open in new tab
  14. Escher, B.I., Hermens, J.L.M., 2002. Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects. Environ. Sci. Technol. 36, 4201-4217. open in new tab
  15. Fatta-Kassinos, D., Meric, S., Nikolaou, A., 2011. Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal. Bioanal. Chem. 399, 251-275. open in new tab
  16. Faust, M., Altenburger, R., Backhaus, T., Bodeker, W., Scholze, M., Grimme, L.H., 2000. Pre- dictive assessment of the aquatic toxicity of multiple chemical mixtures. J. Environ. Qual. 29, 1063-1068. open in new tab
  17. Frick, M.H., Elo, O., Haapa, K., Heinonen, O.P., Heinsalmi, P., Helo, P., Nikkilä, E.A., 1987. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. N. Engl. J. Med. 317, 1237-1245. open in new tab
  18. Gan, T.J., 2010. Diclofenac: an update on its mechanism of action and safety profile. Curr. Med. Res. Opin. 26, 1715-1731. open in new tab
  19. Gao, C., Liu, Z., Chen, J., Yan, Z., 2013. A novel fluorescent assay for oxytetracycline hydro- chloride based on fluorescence quenching of water-soluble CdTe nanocrystals. Lumi- nescence 28, 378-383. open in new tab
  20. Halling-Sørensen, B., Nielsen, S.N., Lanzky, P.F., Ingerslev, F., Lützhøft, H.H., Jørgensen, S.E., 1998. Occurrence, fate and effects of pharmaceutical substances in the environment-a review. Chemosphere 36, 357-393. open in new tab
  21. Jakovljevic, V., Sabo, A., Tomić, Z., Milijasević, B., Popovic, M., Vasovic, V., Rasković, A., 2009. Interaction of diclofenac and ketoprofen with cardioactive drugs in rats. Eur. J. Drug Metab. Pharmacokinet. 34, 11-17. open in new tab
  22. Karaman, S., Gunusen, I., Uyar, M., Firat, V., 2006. The effect of pre-operative lornoxicam and ketoprofen application on the morphine consumption of post-operative pa- tient-controlled analgesia. J. Int. Med. Res. 34, 168-175. open in new tab
  23. Kasprzyk-Hordern, B., Dinsdale, R.M., Guwy, A.J., 2008. The occurrence of pharmaceuti- cals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales. UK. Water Res. 42, 3498-3518. open in new tab
  24. Kim, S.D., Cho, J., Kim, I.S., Vanderford, B.J., Snyder, S.A., 2007. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 41, 1013-1021. open in new tab
  25. Kortenkamp, A., 2002. Something from "nothing"-eight weak estrogenic chemicals com- bined at concentrations below NOECs produce significant mixture effects. Environ. Sci. Technol. 36, 1751-1756.
  26. Kudłak, B., Wolska, L., Namieśnik, J., 2011. Determination of EC 50 toxicity data of selected heavy metals toward Heterocypris incongruens and their comparison to "direct-con- tact" and microbiotests. Environ. Monit. Assess. 174, 509-516. open in new tab
  27. Lee, P.A., Migeon, C.J., 1975. Puberty in boys: correlation of plasma levels of gonadotropins (LH, FSH), androgens (testosterone, androstenedione, dehydroepiandrosterone and its sulfate), estrogens (estrone and estradiol) and progestins (progesterone and 17- hydroxyprogesterone). J. Clin. Endocrinol. Metab. 41, 556-562. open in new tab
  28. Li, D., Yang, M., Hu, J., Ren, L., Zhang, Y., Li, K., 2008. Determination and fate of oxytetracy- cline and related compounds in oxytetracycline production wastewater and the re- ceiving river. Environ. Toxicol. Chem. 27, 80-86. open in new tab
  29. Lin, A.Y.C., Tsai, Y.T., 2009. Occurrence of pharmaceuticals in Taiwan's surface waters: im- pact of waste streams from hospitals and pharmaceutical production facilities. Sci. Total Environ. 407, 3793-3802. open in new tab
  30. Makris, A., Ryan, K.J., 1975. Progesterone, androstenedione, testosterone, estrone, and es- tradiol synthesis in hamster ovarian follicle cells. Endocrinology 96, 694-701. open in new tab
  31. Marugán, J., Bru, D., Pablos, C., Catalá, M., 2012. Comparative evaluation of acute toxicity by Vibrio fischeri and fern spore based bioassays in the follow-up of toxic chemicals degradation by photocatalysis. J. Hazard. Mater. 213, 117-122. open in new tab
  32. Plackett, R.L., Hewlett, P.S., 1952. Quantal responses to mixtures of poisons. J. R. Stat. Soc. Ser. B (Stat Methodol.) 14, 141-154. open in new tab
  33. Routledge, E.J., Sumpter, J.P., 1996. Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ. Toxicol. Chem. 15, 241-248. open in new tab
  34. Ryshetti, S., Gardas, R.L., Tangeda, S.J., 2015. Effect of temperature on solvation behaviour of diclofenac sodium salt in aqueous glycine and L-proline solutions. J. Chem. Thermodyn. 82, 125-133. open in new tab
  35. Schultz, M.M., Furlong, E.T., Kolpin, D.W., Werner, S.L., Schoenfuss, H.L., Barber, L.B., Blazer, V.S., Norris, D.O., Vajda, A.M., 2010. Antidepressant pharmaceuticals in two U.S. efflu- ent-impacted streams: occurrence and fate in water and sediment, and selective up- take in fish neural tissue. Environ. Sci. Technol. 44, 1918-1925. open in new tab
  36. Stokes, P.E., 1992. Fluoxetine: a five-year review. Clin. Ther. 15, 216-243. open in new tab
  37. Tixier, C., Singer, H.P., Oellers, S., Müller, S.R., 2003. Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. En- viron. Sci. Technol. 37, 1061-1068. open in new tab
  38. U.S. EPA, 1986. Guidelines for health risk assessment of chemical mixtures. Fed. Regist. 51, 34014-34025. open in new tab
  39. Vasquez, M.I., Lambrianides, A., Schneider, M., Kümmerer, K., Fatta-Kassinos, D., 2014. En- vironmental side effects of pharmaceutical cocktails: what we know and what we should know. J. Hazard. Mater. 279, 169-189. open in new tab
  40. Vieno, N.M., Härkki, H., Tuhkanen, T., Kronberg, L., 2007. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. En- viron. Sci. Technol. 41, 5077-5084. open in new tab
  41. Vulliet, E., Cren-Olivé, C., Grenier-Loustalot, M.F., 2011. Occurrence of pharmaceuticals and hormones in drinking water treated from surface waters. Environ. Chem. Lett. 9, 103-114. open in new tab
  42. Watanabe, H., Tamura, I., Abe, R., Takanobu, H., Nakamura, A., Suzuki, T., Hirose, A., Nishimura, T., Tatarazako, N., 2016. Chronic toxicity of an environmentally relevant mixture of pharmaceuticals to three aquatic organisms (alga, daphnid, and fish). En- viron. Toxicol. Chem. 35, 996-1006. open in new tab
  43. Wieczerzak, M., Kudłak, B., Namieśnik, J., 2015. Environmentally oriented models and methods for the evaluation of drug × drug interaction effects. Crit. Rev. Anal. Chem. 45, 131-155. open in new tab
Verified by:
Gdańsk University of Technology

seen 161 times

Recommended for you

Meta Tags