Mono- and bimetallic nanoparticles decorated KTaO 3 photocatalysts with improved Vis and UV–Vis light activity
Abstract
New mono- and bimetallic nanoparticle-decorated perovskite-type KTaO3 photocatalysts were successfully synthesized by hydrothermal reaction followed by photodeposition of MNPs/BNPs. The effect of noble metal type, amount of metal precursor as well as photoreduction method on the physicochemical and photocatalytic properties of MNPs- and BNPs-KTaO3 have been investigated. Photocatalytic activity under Vis light irradiation was estimated in phenol degradation in aqueous phase and toluene removal in gas phase, while under UV–Vis light irradiation was measured amount of H2 generation from formic acid solution. The absorption properties of O2 and H2O molecules on KTaO3(1 0 0) surface supported by Au or Au/Pt NPs was also investigated using density-functional theory (DFT). The experimental results show that, both MNPs-KTaO3 and BNPs-KTaO3 exhibit greatly enhanced pollutant decomposition efficiency under Vis light irradiation and highly improved H2 production under UV–Vis light irradiation compared with pristine KTaO3. The 0.5 Au/1.5 Pt-KTaO3_both and 2.0 Rh-KTaO3 reveal the highest Vis-induced activity among prepared samples in aqueous phase (14.75% of phenol decomposition after 90 min of irradiation) and gas phase (41.98% of toluene removal after 60 min of irradiation), respectively. The theoretical calculations confirmed that adsorption energy of O2 and H2O molecules was increased after loading of Au or Au/Pt NPs on KTaO3 (100) surface. Control tests with scavengers show that O2− radical is significantly involved in phenol oxidation under Vis light irradiation, which proposed mechanism is based on direct electron transfer from MNPs/BNPs to conduction band of KTaO3. The highest amount of H2 evaluation is obtained also by 0.5 Au/1.5 Pt-KTaO3_both after 240 min of UV–Vis light irradiation (76.5 µmol/min), which is eleven times higher than for pristine KTaO3 (6.69 µmol/min). Moreover, the most photocatalytic samples for each model reaction present good repeatability and stability after subsequent three cycles. Summarized, MNPs- and BNPs-KTaO3 are promising material in advanced applications of photocatalysis.
Citations
-
2 6
CrossRef
-
0
Web of Science
-
2 6
Scopus
Authors (8)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
APPLIED SURFACE SCIENCE
no. 441,
pages 993 - 1011,
ISSN: 0169-4332 - Language:
- English
- Publication year:
- 2018
- Bibliographic description:
- Krukowska A., Trykowski G., Winiarski M., Klimczuk T., Lisowski W., Mikolajczyk A., Pinto H., Zaleska-Medynska A.: Mono- and bimetallic nanoparticles decorated KTaO 3 photocatalysts with improved Vis and UV–Vis light activity// APPLIED SURFACE SCIENCE. -Vol. 441, (2018), s.993-1011
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.apsusc.2018.02.077
- Sources of funding:
-
- Statutory activity/subsidy
- Verified by:
- Gdańsk University of Technology
seen 108 times
Recommended for you
Monometallic nanoparticles decorated and rare earth ions doped KTaO3/K2Ta2O6 photocatalysts with enhanced pollutant decomposition and improved H2 generation
- A. Krukowska,
- G. Trykowski,
- W. Lisowski
- + 3 authors
Highly Visible-Light-Photoactive Heterojunction Based on TiO2 Nanotubes Decorated by Pt Nanoparticles and Bi2S3 Quantum Dots
- P. Mazierski,
- J. Nadolna,
- G. Nowaczyk
- + 6 authors