Multibody models for gait analysis - Publication - Bridge of Knowledge

Search

Multibody models for gait analysis

Abstract

The aim of this study was to create multibody biomechanical models to analyze a normal gait of the human. Proposed models can be used to identify joint moments of the lower limbs during normal gait in the single and double support phases. Applying Newton-Euler formulation, following planar models were developed: 1) a mathematical 6DOF model describing a gait in the sagittal plane of the body for single support phase and double support phase; 2) a mathematical 7DOF model describing a gait in the sagittal plane of the body for single support phase and double support phase; 3) a mathematical 7DOF model describing a gait in the frontal plane of the body for single support phase and double support phase. Proposed mathematical models can be applied to solve a forward dynamic task or inverse dynamic task. A validation of these models had been performed by comparing results measured over examination of normal human gait and results calculated by solving an inverse dynamic task.

Cite as

Full text

download paper
downloaded 103 times
Publication version
Accepted or Published Version
License
Copyright (Politechnika Łódzka 2019)

Keywords

Details

Category:
Monographic publication
Type:
rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
Title of issue:
Applicable Solutions in non-linear dynamical systems strony 523 - 539
Language:
English
Publication year:
2019
Bibliographic description:
Wojnicz W., Zagrodny B., Ludwicki M., Mrozowski J., Awrejcewicz J., Wittbrodt E.: Multibody models for gait analysis// Applicable Solutions in Non-Linear Dynamical Systems/ Politechnika Łódzka: Wydawnictwo Politechniki Łódzkiej, 2019, s.523-539
Bibliography: test
  1. Awrejcewicz J.: Classical Mechanics. Dynamics. Springer Berlin (2012). open in new tab
  2. De Leva P. Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. Journal of Biomechanics 29 (9), 1996, 1223-1230 (1996) open in new tab
  3. De Leva P.: Joint center longitudinal positions computed from a selected subset of Chandlers' data. J Biomech 29 (9), 1231-1233 (1996)
  4. Grzelczyk D., Awrejcewicz J.: Modeling and control of an eight-legged walking robot driven by different gait generators. International Journal of Structural Stability and Dynamics (in press). doi: 10.1142/S0219455419410098 open in new tab
  5. Onyshko S., Winter D.A.: A mathematical model for the dynamics of human locomotion. J Biomechanics 13, 361-368 (1980) open in new tab
  6. Troy J.J.: Dynamic balance and walking control of biped mechanisms. Retrospective Theses and Dissertations, 11095, Iowa State University (1995) open in new tab
  7. Winter D.A.: Overall principle of lower limb support during stance phase of gait. J Biomech 13, 923-927 (1980) open in new tab
  8. Wojnicz W., Zagrodny B., Ludwicki M., Syczewska M., J. Mrozowski, Awrejcewicz J.: Approach for determination of functioning of lower limb muscles. Dynamical Systems in Applications (ed. J. Awrejcewicz). Springer Proceedings in Mathematics & Statistics, Vol. 249, 423-38 (2018) open in new tab
  9. Wojnicz W.: Biomechaniczne modele układu mi niowo-szkieletowego człowieka (Biomechanical models of the human musculoskeletal system). Wydawnictwo Politechniki Gda skiej, Gda sk, Poland, 1-209, ISBN 978-83-7348-727-7 (2018)
  10. Zagrodny B., Ludwicki M., Wojnicz W., Mrozowski J., Awrejcewicz J.: Cooperation of mono- and bi-articular muscles: human lower limb. Journal of Musculoskeletal and Neuronal Interactions, 1-7 (2018)
  11. Zajac F.E., Neptune R.R., Kautz S.A.: Biomechanics and muscle coordination of human walking. Part I: Introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16, 215- 232 (2002) open in new tab
  12. Yamaguchi G.T., Zajac F.E.: Restoring Unassisted natural gait to paraplegics via functional neuromuscular stimulation: a computer simulation study. IEEE Transactions on biomedical engineering 37 (9), 886-902 (1990) open in new tab
  13. Wiktoria Wojnicz, Ph.D. DSc, Associate Professor: Gdansk University of Technology, str. G. Narutowicza 11/12, 80-233 Gdansk, POLAND (wiktoria.wojnicz@pg.edu.pl).
  14. Bartłomiej Zagrodny, Ph.D.: Lodz University of Technology, str. Stefanowskiego 1/15, 90-924 Lodz, POLAND (bartlomiej.zagrodny@p.lodz.pl).
  15. Michał Ludwicki, Ph.D.: Lodz University of Technology, str. Stefanowskiego 1/15, 90-924 Lodz POLAND (michal.ludwicki@p.lodz.pl).
  16. Jerzy Mrozowski, Ph.D., DSc, Associate Professor: Lodz University of Technology, str. Stefanowskiego 1/15, 90-924 Lodz POLAND (jerzy.mrozowski@p.lodz.pl).
  17. Jan Awrejcewicz, Professor: Lodz University of Technology, str. Stefanowskiego 1/15, 90-924 Lodz, POLAND (jan.awrejcewicz@p.lodz.pl).
  18. Edmund Wittbrodt, Professor.: Gdansk University of Technology, str. G. Narutowicza 11/12, 80-233
  19. Gdansk, POLAND (Edmund.wittbrodt@pg.edu.pl).
Verified by:
Gdańsk University of Technology

seen 158 times

Recommended for you

Meta Tags