Abstract
The article presents the problem of parameter value selection of the multiclass ``one against all'' approach of an AdaBoost algorithm in tasks of object recognition based on two-dimensional graphical images. AdaBoost classifier with Haar features is still used in mobile devices due to the processing speed in contrast to other methods like deep learning or SVM but its main drawback is the need to assembly the results of binary two-class classifiers in recognition problems. In this paper an original method of selecting the parameter values of the assembling algorithm using many similar face recognition tasks is proposed. The parameter optimization is done by checking all possible vectors of parameter values. The recognition results with optimized parameter values is $10\%$ better in 8-class face database famous48\footnote{http://eti.pg.edu.pl/documents/176468/27493127/famous48.zip} tasks than using random heuristic which can be represented by the average of all possible vectors of parameter values.
Citations
-
1
CrossRef
-
0
Web of Science
-
1
Scopus
Author (1)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Monographic publication
- Type:
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Published in:
-
Advances in Intelligent Systems and Computing
no. 525,
pages 203 - 210,
ISSN: 2194-5357 - Title of issue:
- Image Processing and Communications Challenges 8 strony 203 - 210
- Language:
- English
- Publication year:
- 2017
- Bibliographic description:
- Dembski J.: Multiclass AdaBoost Classifier Parameter Adaptation for Pattern Recognition// / ed. Ryszard s. Choraś : Springer, 2017, s.203-210
- DOI:
- Digital Object Identifier (open in new tab) 10.1007/978-3-319-47274-4_24
- Verified by:
- Gdańsk University of Technology
seen 186 times