New Tetragonal ReGa5(M) (M = Sn, Pb, Bi) Single Crystals Grown from Delicate Electrons Changing - Publication - Bridge of Knowledge

Search

New Tetragonal ReGa5(M) (M = Sn, Pb, Bi) Single Crystals Grown from Delicate Electrons Changing

Abstract

Single crystals of the new Ga-rich phases ReGa~5(Sn), ReGa~5(Pb) and ReGa~5(Bi) were successfully obtained from the flux method. The new tetragonal phases crystallize in the space group P4/mnc (No. 128) with vertex-sharing capped Re2@Ga14 oblong chains. Vacancies were discovered on the Ga4 and Ga5 sites, which can be understood as the direct inclusion of elemental Sn, Pb and Bi into the structure. Heat capacity measurements were performed on all three compounds resulting in a small anomaly which resembles the superconductivity transition temperature from the impurity ReGa5 phase. The three compounds were not superconducting above 1.85 K. Subsequently, electronic structure calculations revealed a high density of states around the Fermi level, as well as non-bonding interactions that likely indicate the stability of these new phases.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cite as

Full text

download paper
downloaded 16 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Crystals no. 9,
ISSN: 2073-4352
Language:
English
Publication year:
2019
Bibliographic description:
Marshall M., Górnicka K., Mudiyanselage R. S. D., Klimczuk T., Xie W.: New Tetragonal ReGa5(M) (M = Sn, Pb, Bi) Single Crystals Grown from Delicate Electrons Changing// Crystals -Vol. 9,iss. 10 (2019), s.527-
DOI:
Digital Object Identifier (open in new tab) 10.3390/cryst9100527
Bibliography: test
  1. Poole, C.K.; Farach, H.A.; Creswick, R.J. Handbook of Superconductivity; Elsevier: Amsterdam, The Netherlands, 1999. open in new tab
  2. Poole, C.K.; Farach, H.A.; Creswick, R.J. Handbook of Superconductivity; Elsevier: Amsterdam, The Netherlands, 1999. open in new tab
  3. Henning, R.W.; Corbett, J.D. Formation of Isolated Nickel-Centered Gallium Clusters in Na 10 Ga 10 Ni and a 2-D Network of Gallium Octahedra in K 2 Ga 3 . Inorg. Chem. 1999, 38, 3883-3888. [CrossRef] open in new tab
  4. Belin, C.; Tillard-Charbonnel, M. Frameworks of clusters in alkali metal-gallium phases: Structure, bonding and properties. Prog. Solid State Chem. 1993, 22, 59-109. [CrossRef] open in new tab
  5. Henning, R.W.; Corbett, J.D. Cs 8 Ga 11 , a New Isolated Cluster in a Binary Gallium Compound. A Family of Valence Analogues A 8 Tr 11 X: A = Cs, Rb; Tr = Ga, In, Tl; X. = Cl, Br, I. Inorg. Chem. 1997, 36, 6045-6049. [CrossRef] [PubMed] open in new tab
  6. Kauzlarich, S.M.; Brown, S.R.; Snyder, G.J. Zintl phases for thermoelectric devices. Dalton Trans. 2007, 2099-2107. [CrossRef] [PubMed] open in new tab
  7. Wade, K. Structural and Bonding Patterns in Cluster Chemistry. In Advances in Inorganic Chemistry and Radiochemistry; Emeléus, H.J., Sharpe, A.G., Eds.; Academic Press: Cambridge, MA, USA, 1976; pp. 1-66. open in new tab
  8. Ellinger, F.H.; Zachariasen, W.H. The crystal structures of PuGa 4 and PuGa 6 . Acta Crystallogr. 1965, 19, 281-283. [CrossRef] open in new tab
  9. Curro, N.J.; Caldwell, T.; Bauer, E.D.; Morales, L.A.; Graf, M.J.; Bang, Y.; Balatsky, A.V.; Thompson, J.D.; Sarrao, J.L. Unconventional superconductivity in PuCoGa 5 . Nature 2005, 434, 622-625. [CrossRef] [PubMed] open in new tab
  10. Neha, P.; Sivaprakash, P.; Ishigaki, K.; Kalaiselvan, G.; Manikandan, K.; Dhaka, R.S.; Uwatoko, Y.; Arumugam, S.; Patnaik, S. Nuanced superconductivity in endohedral gallide Mo 8 Ga 41 . Mater. Res. Express 2018, 6, 016002. [CrossRef] open in new tab
  11. Tillard, M.; Belin, C. Investigation in the Ga-rich side of the Mn-Ga system: Synthesis and crystal structure of MnGa 4 and MnGa 5−x (x~0.15). Intermetallics 2012, 29, 147-154. [CrossRef] open in new tab
  12. Shibayama, T.; Nohara, M.; Aruga Katori, H.; Okamoto, Y.; Hiroi, Z.; Takagi, H. Superconductivity in Rh 2 Ga 9 and Ir 2 Ga 9 without Inversion Symmetry. J. Phys. Soc. Jpn. 2007, 76, 073708. [CrossRef] open in new tab
  13. Belgacem-Bouzida, A.; Djaballah, Y.; Notin, M. Calorimetric measurement of the intermetallic compounds Cr 3 Ga and CrGa 4 and thermodynamic assessment of the (Cr-Ga) system. J. Alloys Compd. 2005, 397, 155-160. [CrossRef] open in new tab
  14. Yannello, V.J.; Kilduff, B.J.; Fredrickson, D.C. Isolobal Analogies in Intermetallics: The Reversed Approximation MO Approach and Applications to CrGa 4 -and Ir 3 Ge 7 -Type Phases. Inorg. Chem. 2014, 53, 2730-2741. [CrossRef] [PubMed] open in new tab
  15. Xie, W.; Luo, H.; Phelan, B.F.; Klimczuk, T.; Cevallos, F.A.; Cava, R.J. Endohedral gallide cluster superconductors and superconductivity in ReGa5. Proc. Natl. Acad. Sci. USA 2015, 112, E7048-E7054. [CrossRef] [PubMed] open in new tab
  16. Dinnebier, R.E.; Billinge, S.J.L. Chapter 1. Principles of Powder Diffraction. In Powder Diffraction; open in new tab
  17. Dinnebier, R.E., Billinge, S.J.L., Eds.; Royal Society of Chemistry: Cambridge, MA, USA, 2008; pp. 1-19. open in new tab
  18. Rodríguez-Carvajal, J. An Introduction to the Program FullProf 2000; open in new tab
  19. Laboratoire Leon Brillouin (CEA-CNRS): Saclay, Paris, France, 2001.
  20. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8. [CrossRef] [PubMed] open in new tab
  21. Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3-8. [CrossRef] [PubMed] open in new tab
  22. Andersen, O.K.; Jepsen, O. Explicit, First-Principles Tight-Binding Theory. Phys. Rev. Lett. 1984, 53, 2571-2574. [CrossRef] open in new tab
  23. Krier, G.; Jepsen, O.; Burkhardt, A.; Andersen, O. The TB-LMTO-ASA Program; Max-Planck-Institut fur Festkoorperforschung: Stuttgart, Germany, 1995.
  24. Deringer, V.L.; Tchougréeff, A.L.; Dronskowski, R. Crystal Orbital Hamilton Population (COHP) Analysis as Projected from Plane-Wave Basis Sets. J. Phys. Chem. A 2011, 115, 5461-5466. [CrossRef] [PubMed] open in new tab
  25. Andersen, O.K. Linear methods in band theory. Phys. Rev. B 1975, 12, 3060-3083. [CrossRef] open in new tab
  26. Lambrecht, W.R.L.; Andersen, O.K. Minimal basis sets in the linear muffin-tin orbital method: Application to the diamond-structure crystals C, Si, and Ge. Phys. Rev. B 1986, 34, 2439-2449. [CrossRef] [PubMed] open in new tab
  27. Grin, Y.; Wedig, U.; Wagner, F.; von Schnering, H.G.; Savin, A. The analysis of "empty space" in the PdGa 5 structure. J. Alloys Compd. 1997, 255, 203-208. [CrossRef] open in new tab
  28. Srivichitranond, L.C.; Seibel, E.M.; Xie, W.; Sobczak, Z.; Klimczuk, T.; Cava, R.J. Superconductivity in a new intermetallic structure type based on endohedral Ta@Ir 7 Ge 4 clusters. Phys. Rev. B 2017, 95, 174521. [CrossRef] open in new tab
Verified by:
Gdańsk University of Technology

seen 109 times

Recommended for you

Meta Tags