Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches - Publication - MOST Wiedzy

Search

Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches

Abstract

This paper addresses modeling and finite element analysis of the transient large-amplitude vibration response of thin rod-type structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite rotations of the normal. The finite element model can be applied to static, stability, and transient analysis of smart structures consisting of a master structure and integrated piezoelectric actuator layers or patches attached to the upper and lower surfaces. Two problems are studied extensively: (i) FE analyses of a clamped semicircular ring shell that has been used as a benchmark problem for linear vibration control in several recent papers are critically reviewed and extended to account for the effects of structural nonlinearity and (ii) a smart circular arch subjected to a hydrostatic pressure load is investigated statically and dynamically in order to study the shift of bifurcation and limit points, eigenfrequencies, and eigenvectors, as well as vibration control for loading conditions which may lead to dynamic loss of stability.

Citations

  • 2 1

    CrossRef

  • 1 8

    Web of Science

  • 2 1

    Scopus

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
CONTINUUM MECHANICS AND THERMODYNAMICS no. 31, pages 147 - 188,
ISSN: 0935-1175
Language:
English
Publication year:
2019
Bibliographic description:
Chróścielewski J., Schmidt R., Eremeev V.: Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches// CONTINUUM MECHANICS AND THERMODYNAMICS. -Vol. 31, iss. 1 (2019), s.147-188
DOI:
Digital Object Identifier (open in new tab) 10.1007/s00161-018-0672-4
Bibliography: test
  1. Robbins, D.H., Reddy, J.N.: Analysis of piezoelectrically actuated beams using a layer-wise displacement theory. Comput. Struct. 41, 265-279 (1991) open in new tab
  2. Krommer, M.: On the correction of the Bernoulli-Euler beam theory for smart piezoelectric beams. Smart Mater. Struct. 10(4), 668 (2001) open in new tab
  3. Maurini, C., dell'Isola, F., Pouget, J.: On models of layered piezoelectric beams for passive vibration control. J. Phys. IV 115, 307-316 (2004) open in new tab
  4. Maurini, C., Pouget, J., dell'Isola, F.: On a model of layered piezoelectric beams including transverse stress effect. Int. J. Solids Struct. 41(16), 4473-4502 (2004) open in new tab
  5. dell'Isola, F., Rosa, L.: Almansi-type boundary conditions for electric potential inducing flexure in linear piezoelectric beams. Contin. Mech. Thermodyn. 9(2), 115-125 (1997) open in new tab
  6. Mindlin, R.D.: Forced thickness-shear and flexural vibrations of piezoelectric crystal plates. J. Appl. Phys. 23(1), 83-88 (1952) open in new tab
  7. Lee, C.-K.: Piezoelectric laminates: theory and experiments for distributed sensors and actuators. In: Tzou, H.S., Anderson, G.L. (eds.) Intelligent Structural Systems, pp. 75-167. Kluwer Academic Publishers, Dordrecht-Boston-London (1992) open in new tab
  8. Yang, J.S., Batra, R.C., Liang, X.Q.: The cylindrical bending vibration of a laminated elastic plate due to piezoelectric actuators. Smart Mater. Struct. 3, 1-9 (1994) open in new tab
  9. Ghosh, K., Batra, R.C.: Shape control of plates using piezoceramic elements. AIAA J. 33, 1354-1357 (1995) open in new tab
  10. Carrera, E.: An improved Reissner-Mindlin-type model for the electromechanical analysis of multilayered plates including piezo-layers. J. Intell. Mater. Syst. Struct. 8(3), 232-248 (1997) open in new tab
  11. Carrera, E., Boscolo, M.: Classical and mixed finite elements for static and dynamic analysis of piezoelectric plates. Int. J. Numer. Meth. Eng. 70, 1135-1181 (2007) open in new tab
  12. Maurini, C., Pouget, J., dell'Isola, F.: Extension of the Euler-Bernoulli model of piezoelectric laminates to include 3D effects via a mixed approach. Comput. Struct. 84(22), 1438-1458 (2006) open in new tab
  13. Alessandroni, S., Andreaus, U., dell'Isola, F., Porfiri, M.: Piezo-electromechanical (PEM) Kirchhoff-Love plates. Eur. J. Mech.-A/Solids 23(4), 689-702 (2004) open in new tab
  14. Rosi, G., Pouget, J., dell'Isola, F.: Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode. Eur. J. Mech.-A/Solids 29(5), 859-870 (2010) open in new tab
  15. Rogacheva, N.N.: Equations of state of piezoceramic shells. J. Appl. Math. Mech. 45(5), 677-684 (1981) open in new tab
  16. Rogacheva, N.: The Theory of Piezoelectric Plates and Shells, p. 260. CRC Press, Boca Raton (1994)
  17. Le, K.C.: An asymptotically exact theory of functionally graded piezoelectric shells. Int. J. Eng. Sci. 112, 42-62 (2017) open in new tab
  18. Vetyukov, Y., Staudigl, E., Krommer, M.: Hybrid asymptotic-direct approach to finite deformations of electromechanically coupled piezoelectric shells. Acta Mech. 229(2), 953-974 (2018) open in new tab
  19. Kulikov, G.M., Plotnikova, S.V.: Exact electroelastic analysis of functionally graded piezoelectric shells. Int. J. Solids Struct. 51(1), 13-25 (2014) open in new tab
  20. Lammering, R.: The application of finite shell element for composites containing piezo-electric polymers in vibration control. Comput. Struct. 41, 1101-1109 (1991) open in new tab
  21. Tzou, H.S., Tseng, C.I.: Distributed vibration control and identification of coupled elastic/piezoelectric systems: Finite element formulation and application. Mech. Syst. Signal Process. 5, 215-231 (1991) open in new tab
  22. Tzou, H.S.: Piezoelectric Shells-Distributed Sensing and Control of Continua. Kluwer Academic Publishers, Dordrecht- Boston-London (1993) open in new tab
  23. Tzou, H.S., Ye, R.: Analysis of piezoelastic structures with laminated piezoelectric triangle shell elements. AIAA J. 34, 110-115 (1996) open in new tab
  24. Carrera, E.: Historical review of Zig-Zag theories for multilayered plates and shells. Appl. Mech. Rev. 56(2), 287-308 (2003) open in new tab
  25. Carrera, E., Giunta, G., Petrolo, M.: Beam Structures: Classical and Advanced Theories. Wiley, Chichester (2011) open in new tab
  26. Carrera, E., Brischetto, S., Nali, P.: Plates and Shells for Smart Structures: Classical and Advanced Theories for Modelling and Analysis. Wiley, Chichester (2011) open in new tab
  27. Naumenko, K., Eremeyev, V.A.: A layer-wise theory for laminated glass and photovoltaic panels. Compos. Struct. 112, 283-291 (2014) open in new tab
  28. Naumenko, K., Eremeyev, V.A.: A layer-wise theory of shallow shells with thin soft core for laminated glass and photovoltaic applications. Compos. Struct. 178, 434-446 (2017) open in new tab
  29. Icardi, U., Di Sciuva, M.: Large-deflection and stress analysis of multilayered plates with induced-strain actuators. Smart Mater. Struct. 5, 140-164 (1996) open in new tab
  30. Mukherjee, A., Chaudhuri, A.S.: Piezolaminated beams with large deformations. Int. J. Solids Struct. 39, 4567-4582 (2002) open in new tab
  31. Lentzen, S., Schmidt, R.: Nonlinear finite element modelling of composite structures with integrated piezoelectric layers. In: Brebbia, C.A., de Wilde, W.P. (eds.) High Performance Structures and Materials II, pp. 67-76. WIT Press, Southampton- Boston (2004)
  32. Lentzen, S., Schmidt, R.: Simulation of sensor application and shape control of piezoelectric structures at large deflections. In: Atluri, S.N., Tadeu, A.J.B. (eds.) Advances in Computational & Experimental Engineering & Science, pp. 439-444. Tech Science Press, Encino (2004)
  33. Lentzen, S., Schmidt, R.: Nonlinear shape control simulation of piezolaminated plates and shells. In: Yao, Z.H., Yuan, M.W., Zhong, W.X. (eds.) Computational Mechanics, Proceedings of the Sixth International Congress of Computational Mechanics, Beijing, China, vol. 2, paper R-304, Tsinghua University Press/Springer-Verlag (2004) open in new tab
  34. Lentzen, S., Schmidt, R.: On piezoelectric actuator layers in plates and shells at large deflections. In: Yang, W. (ed.) IUTAM Symposium "Mechanics and Reliability of Actuating Materials", Beijing, China, 1-3 September 2004, 154-163. Springer, Dordrecht (2006) open in new tab
  35. Lentzen, S., Schmidt, R.: Nonlinear FE-simulation of piezolaminated plates and shells. In: Iyengar, N.G.R., Kumar, A. (eds.) Proceedings, International Congress on Computational Mechanics & Simulation, vol. I, pp. 77-85. Indian Institute of Technology Kanpur (2004) open in new tab
  36. Vu, T.D., Lentzen, S., Schmidt, R.: Geometrically nonlinear FE-analysis of piezolaminated plates based on first-and third- order shear deformation theory. In: Son, N.K., Cat, P.T., Tuan, P.A. (eds.) Proceedings of the 8 th International Conference on Mechatronics Technology, ICMT 2004, Hanoi, Vietnam, 8-12 November 2004, pp. 267-272. Vietnam National University Publisher, Hanoi (2004)
  37. Nguyen, Q.D., Lentzen, S., Schmidt, R.: A geometrically nonlinear third-order shear deformation finite plate element incor- porating piezoelectric layers. In: Son, N.K., Cat, P.T., Tuan, P.A. (eds.) Proceedings of the 8 th International Conference on Mechatronics Technology, ICMT 2004, Hanoi, Vietnam, 8-12 November 2004, pp. 303-308/ Vietnam National University Publisher, Hanoi (2004)
  38. Zhang, S.Q., Chen, M., Zhao, G.Z., Wang, Z.X., Schmidt, R., Qin, X.S.: Modeling techniques for active shape and vibration control of macro-fiber composite laminated structures. Smart Struct. Syst. 19(6), 633-641 (2017) open in new tab
  39. Zhang, S.Q., Wang, Z.X., Qin, X.S., Zhao, G.Z., Schmidt, R.: Geometrically nonlinear analysis of composite laminated structures with multiple macro-fiber composite (MFC) actuators. Compos. Struct. 150, 62-72 (2016) open in new tab
  40. Zhang, S.Q., Schmidt, R., Müller, P.C., Qin, X.S.: Disturbance rejection control for vibration suppression of smart beams and plates under a high frequency excitation. J. Sound Vib. 353, 19-37 (2015) open in new tab
  41. Zhang, S.Q., Li, H.N., Schmidt, R., Müller, P.C.: Disturbance rejection control for vibration suppression of piezoelectric laminated thin-walled structures. J. Sound Vib. 333(5), 1209-1223 (2014) open in new tab
  42. Zhang, S.Q., Li, Y.X., Schmidt, R.: Active shape and vibration control for piezoelectric bonded composite structures using various geometric nonlinearities. Compos. Struct. 1(122), 239-249 (2015) open in new tab
  43. Krishna, M.R.M., Mei, C.: Finite element buckling and post-buckling analyses of a plate with piezoelectric actuator. In: Rogers, C.A., Rogers, R.C. (eds.) Proceedings of the Conference on Recent Advances in Adaptive and Sensory Materials and Their Applications, Virginia Polytechnic Institute and State University, Blacksburg, 1992, pp. 301-313. Technomic Publishing Company Inc, Lancaster, Pennsylvania (1992) open in new tab
  44. Chandrashekhara, K., Bhatia, K.: Active buckling control of smart composite plates-finite-element analysis. Smart Mater. Struct. 2, 31-39 (1993) open in new tab
  45. Wang, Q., Varadan, V.K.: Transition of the buckling load of beams by the use of piezoelectric layers. Smart Mater. Struct. 12, 696-702 (2003) open in new tab
  46. Chróscielewski, J., Klosowski, P., Schmidt, R.: Theory and numerical simulation of nonlinear vibration control of arches with piezoelectric distributed actuators. Mach. Dyn. Probl. 20, 73-90 (1998)
  47. Lentzen, S., Schmidt, R.: Geometrically nonlinear composite shells with integrated piezoelectric layers. Proc. Appl. Math. Mech. 4, 63-66 (2004) open in new tab
  48. Tzou, H.S., Bao, Y., Ye, R.: In: Hagood, N.W. (ed.) Smart Structures and Materials 1994: Smart Structures and Intelligent Systems, Proceeding of SPIE, vol. 2190, pp. 206-214 (1994) open in new tab
  49. Pai, P.F., Nayfeh, A.H., Oh, K., Mook, D.T.: A refined nonlinear model of composite plates with integrated piezoelectric actuators and sensors. Int. J. Solids Struct. 30, 1603-1630 (1993) open in new tab
  50. Reddy, J.N.: On laminated composite plates with integrated sensors and actuators. Eng. Struct. 21, 568-593 (1999) open in new tab
  51. Oh, I.-K., Han, J.-H., Lee, I.: Postbuckling and vibration characteristics of piezolaminated composite plate subject to thermo-piezoelectic loads. J. Sound Vib. 233, 19-40 (2000) open in new tab
  52. Oh, I.-K., Han, J.-H., Lee, I.: Thermopiezoelastic snapping of piezolaminated plates using layerwise nonlinear finite elements. AIAA J. 39, 1188-1197 (2001) open in new tab
  53. Yi, S., Ling, S.F., Ying, M.: Large deformation finite element analyses of composite structures integrated with piezoelectric sensors and actuators. Finite Elem. Anal. Des. 35, 1-15 (2000) open in new tab
  54. Mukherjee, A., Chaudhuri, A.S.: Nonlinear dynamic response of piezolaminated smart beams. Comput. Struct. 83, 1289- 1304 (2005) open in new tab
  55. Lentzen, S., Schmidt, R.: Nonlinear finite element modeling of vibration control of piezolaminated composite plates and shells. In: Wang, K.-W. (ed.) Smart Structures and Materials 2005: Damping and Isolation, Proceedings of SPIE, vol. 5760, Paper 5760-16, SPIE, Bellingham, WA, USA (2005) open in new tab
  56. Lentzen, S., Schmidt, R.: A geometrically nonlinear finite element for transient analysis of piezolaminated shells. In: van Campen, D.H., Lazurko, M.D., van den Oever, W.P.J.M. (eds.) Proceedings Fifth EUROMECH Nonlinear Dynamics Conference, Eindhoven, The Netherlands, 7-12 August 2005, pp. 2492-2500. Eindhoven University of Technology (2005) open in new tab
  57. Lentzen, S., Schmidt, R.: Large amplitude vibrations and modal sensing of intelligent thin piezolaminated structures. In: Soize, C., Schuëller, G.I. (eds.) EURODYN 2005, Proceedings of the 6th European Conference on Structural Dynamics, Paris, France, 4-7 September 2005, pp. 1569-1574, Millpress, Rotterdam (2005) open in new tab
  58. Lentzen, S., Schmidt, R.: Nonlinear transient analysis, vibration control and modal sensing of smart piezolaminated shells. In: Sivakumar, S.M., Meher Prasad, A., Dattaguru, B., Narayanan, S., Rajendran, A.M., Atluri, S.N. (eds.) Advances in Computational & Experimental Engineering and Science, pp. 2062-2067. Tech Science Press, Encino, California, USA (2005) open in new tab
  59. Zhang, S.Q., Schmidt, R.: Static and dynamic FE analysis of piezoelectric integrated thin-walled composite structures with large rotations. Compos. Struct. 112, 345-357 (2014) open in new tab
  60. Rao, J.N., Lentzen, S., Schmidt, R.: Genetically optimised placement of piezoelectric sensor arrays: linear and nonlin- ear transient analysis. In: Brebbia, C.A. (ed.) High-Performance Structures and Materials III, pp. 653-661. WIT Press, Southampton-Boston (2006) open in new tab
  61. Shi, G., Atluri, S.N.: Active control of nonlinear dynamic response of space-frames using piezo-electric actuators. Comput. Struct. 34, 549-564 (1990) open in new tab
  62. Lee, S.-W., Beale, D.G.: Active control of nonlinear oscillations in a flexible rod slider crank mechanism. In: Burdisso, R.A. (ed.) Proceedings of the Second Conference on Recent Advances in Active Control of Sound and Vibration, Virginia Polytechnic Institute and State University, Blacksburg, 1993, pp. 729-740. Technomic Publishing Company Inc, Lancaster, Pennsylvania (1993)
  63. Zhou, Y.-H., Wang, J.: Vibration control of piezoelectric beam-type plates with geometrically nonlinear deformation. Int. J. Non-Linear Mech. 39, 909-920 (2004) open in new tab
  64. Chróscielewski, J., Klosowski, P., Schmidt, R.: Numerical simulation of geometrically nonlinear flexible beam control via piezoelectric layers. ZAMM 77(Supplement 1), S69-S70 (1997)
  65. Chróscielewski, J., Klosowski, P., Schmidt, R.: Modelling and FE-analysis of large deflection shape and vibration control of structures via piezoelectric layers. In: Gabbert, U. (ed.) Smart Mechanical Systems-Adaptronics, Fortschritt-Berichte VDI, Series 11, No. 244, pp. 53-62. VDI-Verlag, Düsseldorf (1997)
  66. Tzou, H.S., Zhou, Y.-H.: Dynamics and control of piezoelectric circular plates with geometrical nonlinearity. J. Sound Vib. 188, 189-207 (1995) open in new tab
  67. Tzou, H.S., Zhou, Y.-H.: Nonlinear piezothermoelasticity and multi-field actuation, part 2: control of nonlinear buckling and dynamics. ASME J. Vib. Acoust. 19, 382-389 (1997) open in new tab
  68. Zhou, Y.-H., Tzou, H.S.: Active control of nonlinear piezoelectric spherical shallow shells. Int. J. Solids Struct. 37, 1663- 1677 (2000) open in new tab
  69. Batra, R.C., Liang, X.Q., Kachroo, P.: Shape control of a nonlinear smart plate. In: Varadan, V.V., Chandra, J. (eds.) Smart Structures and Materials 1997: Mathematics and Control in Smart Structures, Proceedings of SPIE, vol. 3039, pp. 518-525 (1997) open in new tab
  70. Batra, R.C., Liang, X.Q.: Finite dynamic deformations of smart structures. Comput. Mech. 20, 427-438 (1997) open in new tab
  71. Lai, Z., Xue, D.Y., Huang, J.-K., Mei, C.: Nonlinear panel flutter suppression with piezoelectric actuation. In: Burdisso, R.A. (ed.) Proceedings of the Second Conference on Recent Advances in Active Control of Sound and Vibration, Virginia Polytechnic Institute and State University, Blacksburg, 1993, pp. 863-874. Technomic Publishing Company Inc, Lancaster, Pennsylvania (1993) open in new tab
  72. Zhou, R.C., Lai, Z., Xue, D.Y., Huang, J.-K., Mei, C.: Suppression of nonlinear panel flutter with piezoelectric actuators using finite element method. AIAA J. 33, 1098-1105 (1995) open in new tab
  73. Zhou, R.C., Mei, C., Huang, J.-K.: Suppression of nonlinear panel flutter at supersonic speeds and elevated temperatures. AIAA J. 34, 347-354 (1996) open in new tab
  74. Shen, J.Y., Sharpe, L., Jr.: A finite element model for the aeroelasticity analysis of hypersonic panels, part III: flutter suppression. In: Varadan, V.V., Chandra, J. (eds.) Smart Structures and Materials 1997: Mathematics and Control in Smart Structures, Proceedings of SPIE, vol. 3039, pp. 315-323 (1997) open in new tab
  75. Zhang, S.Q., Zhao, G.Z., Zhang, S.Y., Schmidt, R., Qin, X.S.: Geometrically nonlinear FE analysis of piezoelectric laminated composite structures under strong driving electric field. Compos. Struct. 1(181), 112-120 (2017) open in new tab
  76. Rao, M.N., Tarun, S., Schmidt, R., Schröder, K.U.: Finite element modeling and analysis of piezo-integrated composite structures under large applied electric fields. Smart Mater. Struct. 25(5), 055044 (2016) open in new tab
  77. Xin, L., Hu, Z.: Free vibration of layered magneto-electro-elastic beams by SS-DSC approach. Compos. Struct. 125, 96-103 (2015) open in new tab
  78. Rao, M.N., Schmidt, R., Schröder, K.U.: Geometrically nonlinear static FE-simulation of multilayered magneto-electro- elastic composite structures. Compos. Struct. 127, 120-131 (2015) open in new tab
  79. Giorgio, I., Galantucci, L., Della, Corte A., Del Vescovo, D.: Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: current and upcoming applications. Int. J. Appl. Electromagn. Mech. 47(4), 1051-1084 (2015) open in new tab
  80. Andreaus, U., dell'Isola, F., Porfiri, M.: Piezoelectric passive distributed controllers for beam flexural vibrations. JVC/J. Vib. Control, 10(5), 625-659 (2004) . https://doi.org/10.1177/1077546304038224 open in new tab
  81. Alessandroni, S., Andreaus, U., dell'Isola, F., Porfiri, M.: A passive electric controller for multimodal vibrations of thin plates. Comput. Struct. 83(15-16), 1236-1250 (2005). https://doi.org/10.1016/j.compstruc.2004.08.028 open in new tab
  82. Giorgio, I., Culla, A., Del Vescovo, D.: Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network. Arch. Appl. Mech. 79, 859-879 (2009) open in new tab
  83. Pagnini, L.C., Piccardo, G.: The three-hinged arch as an example of piezomechanic passive controlled structure. Contin. Mech. Thermodyn. 28, 1247 (2016). https://doi.org/10.1007/s00161-015-0474-x open in new tab
  84. D'Annibale, F., Rosi, G., Luongo, A.: On the failure of the 'similar piezoelectric control' in preventing the loss of stability caused by nonconservative positional forces. Z. Angew. Math. Phys. 66(4), 1949-1968 (2015) open in new tab
  85. D'Annibale, F.: Piezoelectric control of the Hopf bifurcation of Ziegler's column with nonlinear damping. Nonlinear Dyn. 86, 2179 (2016). https://doi.org/10.1007/s11071-016-2866-2 open in new tab
  86. Šilhavý, M.: A direct approach to nonlinear shells with application to surface-substrate interactions. Math. Mech. Complex Syst. 1(2), 211-232 (2013). https://doi.org/10.2140/memocs.2013.1.211 open in new tab
  87. Girchenko, A.A., Eremeyev, V.A., Altenbach, H.: Interaction of a helical shell with a nonlinear viscous fluid. Int. J. Eng. Sci. 61, 53-58 (2012) open in new tab
  88. Sze, K.Y., Yao, L.Q.: Modelling smart structures with segmented piezoelectric sensors and actuators. J. Sound Vib. 35, 495-520 (2000) open in new tab
  89. Sze, K.Y., Yao, L.Q., Yi, S.: A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part II: smart structure modeling. Int. J. Numer. Meth. Eng. 48, 565-582 (2000) open in new tab
  90. Balamurugan, V., Nayaranan, S.: Active vibration control of smart shells using distributed piezoelectric sensors and actuators. Smart Mater. Struct. 10, 173-180 (2001) open in new tab
  91. Nardinocchi, P., Pezzulla, M., Placidi, L.: Thermodynamically based multiphysic modeling of ionic polymer metal com- posites. J. Intell. Mater. Syst. Struct. 22(16), 1887-1897 (2011) open in new tab
  92. Del Bufalo, G., Placidi, L., Porfiri, M.: A mixture theory framework for modeling the mechanical actuation of ionic polymer metal composites. Smart Mater. Struct. 17(4), 045010 (2008) open in new tab
  93. Tiersten, H.F.: Hamilton's principle for linear piezoelectric media. Proc. IEEE 55(8), 1523-1526 (1967) open in new tab
  94. Allik, H., Hughes, T.J.: Finite element method for piezoelectric vibration. Int. J. Numer. Meth. Eng. 2(2), 151-158 (1970) open in new tab
  95. McMeeking, R.M., Landis, C.M., Jimenez, S.M.: A principle of virtual work for combined electrostatic and mechanical loading of materials. Int. J. Non-Linear Mech. 42(6), 831-838 (2007) open in new tab
  96. Abali, B.E.: Computational Reality: Solving Nonlinear and Coupled Problems in Continuum Mechanics. Springer, Singa- pore (2017)
  97. Lammering, R., Mesecke-Rischmann, S.: Multi-field variational formulations and related finite elements for piezoelectric shells. Smart Mater. Struct. 12(6), 904-913 (2003) open in new tab
  98. Belokon, A.V., Eremeyev, V.A., Nasedkin, A.V., Solov'yev, A.N.: Partitioned schemes of the finite-element method for dynamic problems of acoustoelectroelasticity. J. Appl. Math. Mech. 64(3), 367-377 (2000) open in new tab
  99. Nasedkin, A.V., Eremeyev, V.A.: Harmonic vibrations of nanosized piezoelectric bodies with surface effects. ZAMM 94(10), 878-892 (2014) open in new tab
  100. Eremeyev, V.A., Nasedkin, A.V.: Mathematical models and finite element approaches for nanosized piezoelectric bodies with uncoulped and coupled surface effects. In: Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, pp. 1-18. Springer, Singapore (2017) open in new tab
  101. Abali, B.E., Reich, F.A.: Thermodynamically consistent derivation and computation of electro-thermo-mechanical systems for solid bodies. Comput. Methods Appl. Mech. Eng. 319, 567-595 (2017) open in new tab
  102. Waszczyszyn, Z., Cichoń, Cz, Radwańska, M.: Stability of Structures by Finite Element Methods. Elsevier, Amsterdam (1994) open in new tab
  103. Riks, E.: On the Numerical Solution of Snapping Problems in the Theory of Elastic Stability, SUDAAR 401. Stanford University, Stanford (1970) open in new tab
  104. Riks, E.: The application of Newton's method to the problem of elastic stability. Trans. ASME J. Appl. Mech. 39, 1060-1065 (1972) open in new tab
  105. Wempner, G.: Discrete approximations related to nonlinear theories of solids. Int. J. Solids Struct. 7, 1581-1599 (1971) open in new tab
  106. Chróścielewski, J., Nolte, L.-P.: Strategien zur Lösung nichtlinearer Probleme der Strukturmechanik und ihre modulare Aufbereitung im Konzept MESY, Mitt. Institut für Mechanik, 48, Ruhr-Universität, Bochum (1985)
  107. Chróścielewski, J., Schmidt, R.: A solution control method for nonlinear finite element post-buckling analysis of struc- tures. In: Szabó, J. (ed.) Post-Buckling of Elastic Structures, Proc. of the EUROMECH-Colloquium Nr. 200, Mátrafüred (Hungary), 1985, pp. 19-33. Elsevier Science Publisher B.V., Amsterdam (1986) open in new tab
  108. Cazzani, A., Stochino, F., Turco, E.: An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams. ZAMM, 96(10), 1220-1244 (2016). https://doi.org/10.1002/zamm.201500280 open in new tab
  109. Cazzani, A., Malagu, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 21(5), 562-577 (2014). https://doi.org/10.1177/1081286514531265 open in new tab
  110. Greco, L., Cuomo, M.: B-Spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251-269 (2013) open in new tab
  111. Alibert, J.-J., Della Corte, A., Giorgio, I., Battista, A.: Extensional Elastica in large deformation as -limit of a discrete 1D mechanical system. ZAMP (2017). https://doi.org/10.1007/s00033-017-0785-9 open in new tab
  112. Chróścielewski, J., Witkowski, W.: Discrepancies of energy values in dynamics of three intersecting plates. Int. J. Numer. Methods Biomed. Eng. 26(9), 1188-1202 (2010) open in new tab
  113. Witkowski, W., Rucka, M., Chróścielewski, J., Wilde, K.: On some properties of 2D spectral finite elements in problems of wave propagation. Finite Elem. Anal. Des. 55, 31-41 (2012) open in new tab
  114. Chróścielewski, J., Makowski, J., Stumpf, H.: Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int. J. Numer. Meth. Eng. 35, 63-94 (1992) open in new tab
  115. Chróścielewski, J., Makowski, J., Stumpf, H.: Finite element analysis of smooth, folded and multi-shell structures. Comput. Meth. Appl. Mech. Eng. 141, 1-46 (1997) open in new tab
  116. Kuhl, D., Crisfield, M.A.: Energy-conserving algorithms in non-linear structural dynamics. Int. J. Numer. Meth. Eng. 45, 569-599 (1999) open in new tab
  117. Chróścielewski, J., Lubowiecka, I., Witkowski, W.: Energy-conserving integration in six-field shell dynamics. In: ICTAM04 Abstract Book and CD-ROM Proceedings, 21st International Congress of Theoretical and Applied Mechanics, Warsaw, Poland, 337 (August 15-21, 2004)
  118. Mukherjee, A., Joshi, S.P.: Gradientless technique for optimal distribution of piezoelectric material for structural control. Int. J. Numer. Meth. Eng. 57, 1737-1753 (2003) open in new tab
  119. Mukherjee, A., Joshi, S.P.: Piezoelectric sensor and actuator spatial design for shape control of piezolaminated plates. AIAA J. 40, 1204-1210 (2002) open in new tab
  120. Lentzen, S., Schmidt, R.: Nonlinear dynamics and control of smart piezolaminated plates and shells. In: Proceedings of ICDVC-2006, The Second International Conference on Dynamics, Vibration and Control, Beijing, China, 23-26 August 2006, Paper ICDVC2006-W42, Chinese Academy of Sciences, Beijing (2006) open in new tab
  121. Mukherjee, A., Saha Chaudhuri, A.: Active control of dynamic instability of piezo-laminated imperfect columns. Smart Mater. Struct. 11, 874-879 (2002) open in new tab
  122. Mukherjee, A., Saha Chaudhuri, A.: Exact solutions for instability control of piezolaminated imperfect struts. AIAA J. 14, 857-859 (2004) open in new tab
  123. Mukherjee, A., Saha Chaudhuri, A.: Active control of piezolaminated columns-exact solutions and experimental validation. Smart Mater. Struct. 14, 475-482 (2005) open in new tab
Verified by:
Gdańsk University of Technology

seen 28 times

Recommended for you

Meta Tags