Nuclear Magnetic Resonance Metabolomics Reveals Qualitative and Quantitative Differences in the Composition of Human Breast Milk and Milk Formulas - Publication - Bridge of Knowledge

Search

Nuclear Magnetic Resonance Metabolomics Reveals Qualitative and Quantitative Differences in the Composition of Human Breast Milk and Milk Formulas

Abstract

Commercial formula milk (FM) constitutes the best alternative to fulfill the nutritional requirements of infants when breastfeeding is precluded. Here, we present the comparative study of polar metabolite composition of human breast milk (HBM) and seven different brands of FM by nuclear magnetic resonance spectroscopy. The results of the multivariate data analysis exposed qualitative and quantitative differences between HBM and FM composition as well as within FM of various brands and in HBM itself (between individual mothers and lactation period). Several metabolites were found exclusively in HBM and FM. Statistically significant higher levels of isoleucine and methionine in their free form were detected in FM samples based on caprine milk, while FM samples based on bovine milk showed a higher level of glucose and galactose in comparison to HBM. The results suggest that the amelioration of FM formulation is imperative to better mimic the composition of minor nutrients in HBM.

Citations

  • 1 6

    CrossRef

  • 0

    Web of Science

  • 1 6

    Scopus

Cite as

Full text

download paper
downloaded 27 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Nutrients no. 12,
ISSN: 2072-6643
Language:
English
Publication year:
2020
Bibliographic description:
Garwolińska D., Hewelt-Belka W., Kot-Wasik A., Sundekilde U.: Nuclear Magnetic Resonance Metabolomics Reveals Qualitative and Quantitative Differences in the Composition of Human Breast Milk and Milk Formulas// Nutrients -Vol. 12,iss. 4 (2020), s.921-
DOI:
Digital Object Identifier (open in new tab) 10.3390/nu12040921
Bibliography: test
  1. World Health Organization/United Nations Children's Fund. WHO/UNICEF Global Strat-egy for Infant and Young Child Feeding; World Health Org-Anization: Geneva, Switzerland, 2003. open in new tab
  2. Ballard, O.; Morrow, A.L. Human Milk Composition. Nutrients and Bioactive Factors. Pediatr. Clin. N. Am. 2013, 60, 49-74. [CrossRef] [PubMed] open in new tab
  3. Lawrence, R.M.; Pane, C.A. Human Breast Milk: Current Concepts of Immunology and Infectious Diseases. Curr. Probl. Pediatr. Adolesc. Health Care 2007, 37, 7-36. [CrossRef] [PubMed] open in new tab
  4. Jakaitis, B.M.; Denning, P.W. Human Breast Milk and the Gastrointestinal Innate Immune System. Clin. Perinatol. 2015, 41, 423-435. open in new tab
  5. Isaacs, E.B.; Fischl, B.R.; Quinn, B.T.; Chong, W.K.; Gadian, D.G.; Lucas, A. Impact of Breast Milk on IQ, Brain Size and White Matter Development. Pediatr. Res. 2010, 67, 357-362. [CrossRef] [PubMed] open in new tab
  6. Zou, X.; Ali, A.H.; Abed, S.M.; Guo, Z. Current Knowledge of Lipids in Human Milk and Recent Innovations in Infant Formulas. Curr. Opin. Food Sci. 2017, 16, 28-39. [CrossRef] open in new tab
  7. Singhal, A.; Cole, T.J.; Lucas, A. Early Nutrition in Preterm Infants and Later Blood Pressure: Two Cohorts after Randomised Trials. Lancet 2001, 357, 413-419. [CrossRef] open in new tab
  8. Owen, C.G.; Whincup, P.H.; Kaye, S.J.; Martin, R.M.; Smith, G.D.; Cook, D.G.; Bergstrom, E.; Black, S.; Wadsworth, M.E.J.; Fall, C.H.; et al. Does Initial Breastfeeding Lead to Lower Blood Cholesterol in Adult Life? A Quantitative Review of the Evidence. Am. J. Clin. Nutr. 2008, 88, 305-314. [CrossRef] open in new tab
  9. De Halleux, V.; Rigo, J. Variability in Human Milk Composition: Benefit of Individualized Fortification in Very-Low-Birth-Weight Infants. Am. J. Clin. Nutr. 2013, 98, 529S-535S. [CrossRef] open in new tab
  10. Ajetunmobi, O.M.; Whyte, B.; Chalmers, J.; Tappin, D.M.; Uk, M.; Wolfson, L.; Fleming, M.; Macdonald, A.; Wood, R.; Stockton, D.L. Breastfeeding is Associated with Reduced Childhood Hospitalization: Evidence from a Scottish Birth Cohort (1997-2009). J. Pediatr. 2015, 166, 620-625.e4. [CrossRef] open in new tab
  11. Perrone, S.; Longini, M.; Zollino, I.; Bazzini, F.; Tassini, M.; Vivi, A.; Bracciali, C.; Calderisi, M.; Buonocore, G. Breast Milk: To Each His Own. From Metabolomic Study, Evidence of Personalized Nutrition in Preterm Infants. Nutrition 2019, 62, 158-161. [CrossRef] open in new tab
  12. Commission of the European Communities. Commission Directive 2013/46/EU of 28 August 2013 amending Directive 2006/141/EC with regard to Protein Requirements for Infant Formulae and Follow-on Formulae. Off. J. Eur. Commun. 2013, L230, 16-19. open in new tab
  13. Commission of the European Communities. Commission Directive 2006/141/EC of 22 December 2006 on Infant Formulae and Follow-On Formulae and Amending Directive 1999/21/EC Text with EEA Relevance. Off. J. Eur. Commun. 2006, 49, 1-33. open in new tab
  14. Borszewska-Kornacka, M.K.; Chybicka, A.; Czerwionka-szaflarska, M. Zalecenia Polskiego Towarzystwa Gastroenterologii, Hepatologii iŻywienia Dzieci. Stand. Medyczne. Pediatr. 2014, 11, 321-336.
  15. Hewelt-Belka, W.; Garwolińska, D.; Belka, M.; Bączek, T.; Namieśnik, J.; Kot-Wasik, A. A New Dilution-Enrichment Sample Preparation Strategy for Expanded Metabolome Monitoring of Human Breast Milk that Overcomes the Simultaneous Presence of Low-and High-Abundance Lipid Species. Food Chem. 2019, 288, 154-161. [CrossRef] [PubMed] open in new tab
  16. Sundekilde, U.K.; Downey, E.; O'Mahony, J.A.; O'Shea, C.A.; Ryan, C.A.; Kelly, A.L.; Bertram, H.C. The Effect of Gestational and Lactational Age on the Human Milk Metabolome. Nutrients 2016, 8, 304. [CrossRef] [PubMed] open in new tab
  17. Smilowitz, J.T.; Sullivan, A.O.Õ.; Barile, D.; German, J.B.; Lo, B. The Human Milk Metabolome Reveals Diverse Oligosaccharide Profiles. J. Nutr. 2013, 143, 1709-1718. [CrossRef] [PubMed] open in new tab
  18. Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.; Bouatra, S.; et al. HMDB: A Knowledgebase for the Human Metabolome. Nucleic Acids Res. 2009, 37, D603-D610. [CrossRef] open in new tab
  19. Morera Pons, S.; Bargallo, Â.A.C.; Folgoso, C.C.; Lo, M.; Sabater, Â. Triacylglycerol Composition in Colostrum, Transitional and Mature Human Milk. Eur. J. Clin. Nutr. 2000, 54, 878-882. [CrossRef] open in new tab
  20. Carratù, B.; Boniglia, C.; Scalise, F.; Ambruzzi, A.M.; Sanzini, E. Nitrogenous Components of Human Milk: Non-Protein Nitrogen, True Protein and Free Amino Acids. Food Chem. 2003, 81, 357-362. [CrossRef] open in new tab
  21. Batterham, E.S.; Bayley, H.S. Effect of Frequency of Feeding of Diets Containing Free or Protein-Bound Lysine on the Oxidation of [14 C]lysine or [14 C]phenylalanine by Growing Pigs. Br. J. Nutr. 1989, 62, 647-655. [CrossRef] open in new tab
  22. Harris, R.A.; Joshi, M.; Jeoung, N.H.; Obayashi, M. Overview of the Molecular and Biochemical Basis of Branched-Chain Amino Acid Catabolism. J. Nutr. 2005, 135, 1527S-1530S. [CrossRef] [PubMed] open in new tab
  23. Mudd, S.H. Hypermethioninemias of Genetic and Non-Genetic Origin: A Review. Am. J. Med. Genet. Part C Semin. Med. Genet. 2011, 157, 3-32. [CrossRef] [PubMed] open in new tab
  24. Mudd, S.H.; Braverman, N.; Pomper, M.; Tezcan, K.; Kronick, J.; Jayakar, P.; Garganta, C.; Ampola, M.G.; Levy, H.L.; McCandless, S.E.; et al. Infantile Hypermethioninemia and Hyperhomocysteinemia Due to High Methionine Intake: A Diagnostic Trap. Mol. Genet. Metab. 2003, 79, 6-16. [CrossRef] open in new tab
  25. Banta-Wright, S.A.; Shelton, K.C.; Lowe, N.D.; Knafl, K.A.; Houck, G.M. Breast-Feeding Success among Infants with Phenylketonuria. J. Pediatr. Nurs. 2012, 27, 319-327. [CrossRef] [PubMed] open in new tab
  26. Acosta, P.B.; Matalon, K.M. Nutrition Management of Patients with Inherited Disorders of Aromatic Amino Acid Metabolism; Jones and Bartlett Publishers: Sudbury, MA, USA, 2010; ISBN 9780763757779. open in new tab
  27. Pinto, A.; Adams, S.; Ahring, K.; Allen, H.; Almeida, M.F.; Garcia-Arenas, D.; Arslan, N.; Assoun, M.; Atik Altınok, Y.; Barrio-Carreras, D.; et al. Early Feeding Practices in Infants with Phenylketonuria across Europe. Mol. Genet. Metab. Rep. 2018, 16, 82-89. [CrossRef] [PubMed] open in new tab
  28. Grandhee, S.K.; Monnier, V.M. Mechanism of Formation of the Maillard Protein Cross-Link Pentosidine: Glucose, Fructose, and Ascorbate as Pentosidine Precursors. J. Biol. Chem. 1991, 266, 11649-11653. [PubMed]
  29. Li, K.; Jiang, J.; Xiao, H.; Wu, K.; Qi, C.; Sun, J.; Li, D. Changes in the Metabolite Profile of Breast Milk over Lactation Stages and Their Relationship with Dietary Intake in Chinese Women: HPLC-QTOFMS Based Metabolomic Analysis. Food Funct. 2018, 9, 5189-5197. [CrossRef] open in new tab
  30. Scano, P.; Murgia, A.; Demuru, M.; Consonni, R.; Caboni, P. Metabolite Profiles of Formula Milk Compared to Breast Milk. Food Res. Int. 2016, 87, 76-82. [CrossRef] open in new tab
  31. Kuhn, S.; Slavetinsky, C.J.; Peschel, A. Synthesis and Function of Phospholipids in Staphylococcus Aureus. Int. J. Med. Microbiol. 2015, 305, 196-202. [CrossRef] open in new tab
  32. Gómez-Gallego, C.; Morales, J.M.; Monleón, D.; du Toit, E.; Kumar, H.; Linderborg, K.M.; Zhang, Y.; Yang, B.; Isolauri, E.; Salminen, S.; et al. Human Breast Milk NMR Metabolomic Profile across Specific Geographical Locations and Its Association with the Milk Microbiota. Nutrients 2018, 10, 1355. [CrossRef] open in new tab
  33. Gay, M.C.L.; Koleva, P.T.; Slupsky, C.M.; du Toit, E.; Eggesbo, M.; Johnson, C.C.; Wegienka, G.; Shimojo, N.; Campbell, D.E.; Prescott, S.L.; et al. Worldwide Variation in Human Milk Metabolome: Indicators of Breast Physiology and Maternal Lifestyle? Nutrients 2018, 10, 1151. [CrossRef] [PubMed] open in new tab
  34. Marcobal, A.; Barboza, M.; Froehlich, J.W.; Block, D.E.; Bruce, J.; Lebrilla, C.B.; Mills, D.A. Consumption of Human Milk Oligosaccharides by Gut-Related Microbes. J. Agric. Food Chem. 2011, 58, 5334-5340. [CrossRef] [PubMed] open in new tab
  35. Kulinich, A.; Liu, L. Human Milk Oligosaccharides: The Role in the Fine-Tuning of Innate Immune Responses. Carbohydr. Res. 2016, 432, 62-70. [CrossRef] [PubMed] open in new tab
  36. Battini, R.; Alessandrì, M.G.; Leuzzi, V.; Moro, F.; Tosetti, M.; Bianchi, M.C.; Cioni, G. Arginine: Glycine Amidinotransferase (AGAT) Deficiency in a Newborn: Early Treatment Can Prevent Phenotypic Expression of the Disease. J. Pediatr. 2006, 148, 828-830. [CrossRef] [PubMed] open in new tab
  37. Braissant, O.; Henry, H.; Béard, E.; Uldry, J. Creatine Deficiency Syndromes and the Importance of Creatine Synthesis in the Brain. Amino Acids 2011, 40, 1315-1324. [CrossRef] open in new tab
  38. Gil, A.; Pita, M.; Martinez, A.; Molina, J.A.; Snchez Medina, F. Effect of Dietary Nucleotides on the Plasma Fatty Acids in At-Term Neonates. Hum. Nutr. Clin. Nutr. 1986, 40, 185-195.
  39. DeLucchi, C.; Pita, M.L.; Faus, M.J.; Molina, J.A.; Uauy, R.; Gil, A. Effects of Dietary Nucleotides on the Fatty Acid Composition of Erythrocyte Membrane Lipids in Term Infants. J. Pediatr. Gastroenterol. Nutr. 1987, 6, 568-574. [CrossRef] open in new tab
  40. Sánchez-Pozo, A.; Ramírez, M.; Gil, A.; Maldonado, J.; van Biervliet, J.P.; Rosseneu, M. Dietary Nucleotides Enhance Plasma Lecithin Cholesterol Acyl Transferase Activity and Apolipoprotein A-IV Concentration in Preterm Newborn Infants. Pediatr. Res. 1995, 37, 328-333. [CrossRef] open in new tab
Verified by:
Gdańsk University of Technology

seen 103 times

Recommended for you

Meta Tags