Numerical simulation of the influence of the selected factors on the performance of a concrete road barrier H2/W5/B - Publication - Bridge of Knowledge

Search

Numerical simulation of the influence of the selected factors on the performance of a concrete road barrier H2/W5/B

Abstract

This paper discuss the influence of selected factors on the performance of a concrete road barrier H2/W5/B. Modelling techniques of a concrete road safety system were briefly discussed. Comparison to the full scale crash test results has been shown. The concrete road safety barrier has been investigated for evaluation of the overall damage after collision under various initial conditions. The failure assessment criterion has been proposed and it was derived from a qualitative comparison of the numerical results with the full scale crash test data. Impact severity indexes have been calculated and discussed.

Citations

  • 9

    CrossRef

  • 0

    Web of Science

  • 1 0

    Scopus

Cite as

Full text

download paper
downloaded 34 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
MATEC Web of Conferences no. 231, pages 1 - 9,
ISSN: 2261-236X
Language:
English
Publication year:
2018
Bibliographic description:
Pachocki Ł., Wilde K.: Numerical simulation of the influence of the selected factors on the performance of a concrete road barrier H2/W5/B// MATEC Web of Conferences -Vol. 231, (2018), s.1-9
DOI:
Digital Object Identifier (open in new tab) 10.1051/matecconf/201823101014
Bibliography: test
  1. European Standard EN 1317-1-5 (2010) open in new tab
  2. British Standard PD CEN/TR 16303-1-5 (2012) open in new tab
  3. J.O. Hallquist, LS-DYNA Theory Manual (Livermore Software Technology Corporation, 2006)
  4. LS-DYNA Keyword User's Manual (Livermore Software Technology Corporation, 2015)
  5. K. Jamroz, S. Burzyński, W. Witkowski, K. Wilde, Numerical methods for the assessment of bridge safety barriers, in: M. Kleiber, T. Burczyński, K. Wilde, J. Gorski, K. Winkelmann, Ł. Smakosz (Eds.), Adv. Mech. Theor. Comput. Interdiscip. Issues, 1st ed., pp. 231-234 (CRC Press, 2016) open in new tab
  6. W. Borkowski, Z. Hryciów, P. Rybak, J. Wysocki, Numerical simulation of the standard TB11 and TB32 tests for a concrete safety barrier, J. KONES Powertrain 7 open in new tab
  7. MATEC Web of Conferences 231, 01014 (2018) https://doi.org/10.1051/matecconf/201823101014 GAMBIT 2018 open in new tab
  8. Transp. 17 pp. 63-71 (2010)
  9. M. Borovinšek, M. Vesenjak, M. Ulbin, Z. Ren, Simulation of crash tests for high containment levels of road safety barriers, Eng. Fail. Anal. 14 pp. 1711-1718 (2007). doi:10.1016/J.ENGFAILANAL.2006.11.068 open in new tab
  10. K. Wilde, K. Jamroz, D. Bruski, S. Burzyński, J. Chróścielewski, W. Witkowski, Numerical simulations of bus crash-test with barrier and truss supporting structure (in Polish), J. Civ. Eng. Environ. Archit. 63 pp. 455-467 (2016) open in new tab
  11. M. Klasztorny, D.B. Nycz, P. Szurgott, Modelling and simulation of crash tests of N2-W4-A category safety road barrier in horizontal concave arc, Int. J. Crashworthiness. 21 pp. 644-659 (2016). doi:10.1080/13588265.2016.1212962 10. open in new tab
  12. K. Wilde, D. Bruski, S. Burzyński, J. Chróścielewski, W. Witkowski, Numerical crash analysis of the cable barrier, in: J. Awrejcewicz, M. Kaźmierczak, J. Mrozowski, P. Olejnik (Eds.), DSTA-2017 Conf. Books, pp. 555-566 (Department of Automation, Biomechanics and Mechatronics, 2017) open in new tab
  13. M. Klasztorny, K. Zielonka, D.B. Nycz, P. Posuniak, R.K. Romanowski, Experimental validation of simulated TB32 crash tests for SP-05/2 barrier on horizontal concave arc without and with composite overlay, Arch. Civ. Mech. Eng. 18 pp. 339-355 (2018). doi:10.1016/J.ACME.2017.07.007 open in new tab
  14. K. Wilde, K. Jamroz, D. Bruski, M. Budzyński, S. Burzyński, J. Chroscielewski, W. Witkowski, Curb-to-Barrier Face Distance Variation an a TB51 Bridge Barrier Crash Test Simulation, Arch. Civ. Eng. 63 pp. 187-199 (2017). doi:https://doi.org/10.1515/ace-2017-0024 open in new tab
  15. P. Baranowski, J. Malachowski, J. Janiszewski, J. Wekezer, Detailed tyre FE modelling with multistage validation for dynamic analysis, Mater. Des. 96 pp. 68- 79 (2016). doi:10.1016/J.MATDES.2016.02.029 open in new tab
  16. P. Baranowski, J. Malachowski, L. Mazurkiewicz, Numerical and experimental testing of vehicle tyre under impulse loading conditions, Int. J. Mech. Sci. 106 pp. 346-356 (2016). doi:10.1016/J.IJMECSCI.2015.12.028 open in new tab
  17. P. Baranowski, J. Janiszewski, J. Małachowski, Tire rubber testing procedure over a wide range of strain rates, J. Theor. Appl. Mech. 55 pp. 727-739 (2017). doi:10.15632/jtam-pl.55.2.727 open in new tab
  18. P. Baranowski, J. Malachowski, Numerical study of selected military vehicle chassis subjected to blast loading in terms of tire strength improving, Bull. Polish Acad. Sci. Tech. Sci. 63 pp. 867-878 (2015). doi:10.1515/bpasts-2015-0099 open in new tab
  19. J.C. Kennedy, C.A. Plaxico, C.R. Miele, Development of an NCHRP Report 350 TL-3 New Jersey Shape 50-Inch Portable Concrete Barrier (Ohio Department of Transportation, 2006) open in new tab
  20. R.W. Bielenberg, R.K. Faller, T.E. Quinn, D.L. Sicking, Development of a retrofit, low-deflection, temporary concrete barrier system. Research Project Number TPF- 5(193) Suppl. #15 NDOR Sponsoring Agency Code RPFP-WISC-4 (Midwest Roadside Safety Facility, 2014) open in new tab
  21. T. Belytschko, W. Liu, B. Moran, Nonlinear finite elements for continua and structures (Wiley, 2000) open in new tab
  22. Y. Wu, J.E. Crawford, J.M. Magallanes, Performance of LS-DYNA Concrete Constitutive Models, in: 12th Int. LS-DYNA Users Conf., (2012) open in new tab
  23. H. Jiang, J. Zhao, Calibration of the continuous surface cap model for concrete, Finite Elem. Anal. Des. 97 pp. 1-19 (2015). doi:10.1016/J.FINEL.2014.12.002 open in new tab
  24. Y.D. Murray, Users Manual for LS-DYNA Concrete Material Model 159. Report no. FHWA-HRT-05-062 (Federal Highway Administration, 2007)
  25. Y.D. Murray, A. Abu-Odeh, R. Bligh, Evaluation of LS-DYNA Concrete Material Model 159. Report no. FHWA-HRT-05-063 (Federal Highway Administration, 2007)
  26. Y.D. Murray, B.A. Lewis, Numerical Simulation of Damage in Concrete. (APTEK INC COLORADO SPRINGS CO, 1995)
  27. L.E. Schwer, Y.D. Murray, A three-invariant smooth cap model with mixed hardening, Int. J. Numer. Anal. Methods Geomech. 18 pp. 657-688 (1994). doi:10.1002/nag.1610181002 open in new tab
  28. W.L. Oberkampf, M.F. Barone, Measures of agreement between computation and experiment: Validation metrics, J. Comput. Phys. 217 pp. 5-36 (2006). doi:10.1016/J.JCP.2006.03.037 open in new tab
  29. M. Mongiardini, M.H. Ray, M. Anghileri, Development of a Software for the Comparison of Curves During the Verification and Validation of Numerical Models, in: 7th Eur. LS-DYNA Conf., (2009) open in new tab
  30. M.H.. Ray, M..
  31. Mongiardini, C.A.. Plaxio, M. Anghileri, NCHRP Web-Only Document 179: Procedures for Verification and Validation of Computer Simulations Used for Roadside Safety Applications (Transportation Research Board, 2010) 29. ROBUST PROJECT: https://www.vegvesen.no/s/robust/Computational_mechanics/Vehicle models/, (2018) open in new tab
  32. K. Wilde, D. Bruski, S. Burzyński, J. Chróścielewski, Ł. Pachocki, W. Witkowski, On the validation of the LS-DYNA Geo Metro numerical model (to be published), in: 64 Sci. Conf. Krynica Zdrój, (2018)
  33. MATEC Web of Conferences 231, 01014 (2018) https://doi.org/10.1051/matecconf/201823101014 GAMBIT 2018 open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 124 times

Recommended for you

Meta Tags