Abstract
In the paper, we show that the incidence chromatic number of a complete k-partite graph is at most ∆+2 (i.e., proving the incidence coloring conjecture for these graphs) and it is equal to ∆+1 if and only if the smallest part has only one vertex.
Citations
-
2
CrossRef
-
0
Web of Science
-
3
Scopus
Authors (3)
Cite as
Full text
download paper
downloaded 54 times
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.7151/dmgt.1995
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
Discussiones Mathematicae Graph Theory
no. 38,
pages 107 - 119,
ISSN: 1234-3099 - Language:
- English
- Publication year:
- 2018
- Bibliographic description:
- Janczewski R., Małafiejska A., Małafiejski M.: On incidence coloring of coloring of complete multipartite and semicubic bipartite graphs// Discussiones Mathematicae Graph Theory. -Vol. 38, iss. 1 (2018), s.107-119
- DOI:
- Digital Object Identifier (open in new tab) 10.7151/dmgt.1995
- Verified by:
- Gdańsk University of Technology
seen 176 times