On stress singularity near the tip of a crack with surface stresses - Publication - MOST Wiedzy

Search

On stress singularity near the tip of a crack with surface stresses

Abstract

In the framework of the simplified linear Gurtin–Murdoch surface elasticity we discuss a singularity of stresses and displacements in the vicinity of a mode III crack. We show that inhomogeneity in surface elastic properties may significantly affect the solution and to change the order of singularity. We also demonstrate that implicitly or explicitly assumed symmetry of the problem may also lead to changes in solutions. Considering various loading and symmetry conditions we show that the stresses may have logarithmic or square root singularity or be bounded in the vicinity of a crack tip.

Citations

  • 5

    CrossRef

  • 4

    Web of Science

  • 4

    Scopus

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE pages 1 - 17,
ISSN: 0020-7225
Language:
English
Publication year:
2020
Bibliographic description:
Gorbushin N., Eremeev V., Mishuris G.: On stress singularity near the tip of a crack with surface stresses// INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE -, (2020), s.1-17
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.ijengsci.2019.103183
Bibliography: test
  1. Antipov, Y. A., & Schiavone, P. (2011). Integro-differential equation for a finite crack in a strip with surface effects. Quarterly Journal of Mechanics and Applied Mathematics, 64(1), 87-106. open in new tab
  2. Barenblatt, G. I. (1959). The formation of equilibrium cracks during brittle fracture. General ideas and hydrotheses: Axially-symmetric cracks. Journal of Applied Mathematicsand Mechanics, 23, 622-636. open in new tab
  3. Belov, P. A., Lurie, S. A., & Golovina, N. Y. (2019). Classifying the existing continuum theories of ideal-surface adhesion. In Adhesives and adhesive joints in industry (pp. 1-12). IntechOpen.
  4. Benveniste, Y., & Miloh, T. (2001). Imperfect soft and stiff interfaces in two-dimensional elasticity. Mechanics of Materials, 33(6), 309-323. open in new tab
  5. Benveniste, Y., & Miloh, T. (2007). Soft neutral elastic inhomogeneities with membrane-type interface conditions. Journal of Elasticity, 88(2), 87-111. open in new tab
  6. Duan, H. L., Wang, J., & Karihaloo, B. L. (2008). Theory of elasticity at the nanoscale. In Advances in applied mechanics: 42 (pp. 1-68). Elsevier. open in new tab
  7. Eremeyev, V. A. (2016). On effective properties of materials at the nano-and microscales considering surface effects. Acta Mechanica, 227(1), 29-42. open in new tab
  8. Eremeyev, V. A. (2019). Strongly anisotropic surface elasticity and antiplane surface waves. Philosophical Transactions of the Royal Society A, 1-14. open in new tab
  9. Eremeyev, V. A., & Lebedev, L. P. (2013). Existence of weak solutions in elasticity. Mathematics and Mechanics of Solids, 18(2), 204-217. open in new tab
  10. Eremeyev, V. A., & Lebedev, L. P. (2016). Mathematical study of boundary-value problems within the framework of Steigmann-Ogden model of surface elasticity. Continuum Mechanics and Thermodynamics, 28(1-2), 407-422. open in new tab
  11. Gurtin, M. E., & Murdoch, A. I. (1975). A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), 291-323. open in new tab
  12. Gurtin, M. E., & Murdoch, A. I. (1978). Surface stress in solids. International Journal of Solidsand Structures, 14(6), 431-440. open in new tab
  13. Han, Z., Mogilevskaya, S. G., & Schillinger, D. (2018). Local fields and overall transverse properties of unidirectional composite materials with multiple nanofibers and Steigmann-Ogden interfaces. International Journal of Solids and Structures, 147, 166-182. open in new tab
  14. Javili, A., dell'Isola, F., & Steinmann, P. (2013). Geometrically nonlinear higher-gradient elasticity with energetic boundaries. Journal of the Mechanicsand Physicsof Solids, 61(12), 2381-2401. open in new tab
  15. Javili, A., Mc Bride, A., & Steinmann, P. (2013). Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Applied Mechanics Reviews, 65(1), 010802. open in new tab
  16. Kim, C., Schiavone, P., & Ru, C. Q. (2011). Analysis of plane-strain crack problems (mode-I & mode-II) in the presence of surface elasticity. Journal of Elasticity, 104(1-2), 397-420. open in new tab
  17. Kim, C. I., Ru, C. Q., & Schiavone, P. (2013). A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Mathematics and Mechanics of Solids, 18(1), 59-66. open in new tab
  18. Kim, C. I., Schiavone, P., & Ru, C. Q. (2010). Analysis of a mode-III crack in the presence of surface elasticity and a prescribed non-uniform surface traction. Zeitschrift für angewandte Mathematik und Physik, 61(3), 555-564. open in new tab
  19. Kim, C. I., Schiavone, P., & Ru, C. Q. (2010). The effects of surface elasticity on an elastic solid with mode-III crack: complete solution. Transactions of ASME Journal of Applied Mechanics, 77(2), 021011. open in new tab
  20. Kim, C. I., Schiavone, P., & Ru, C. Q. (2011). The effect of surface elasticity on a mode-III interface crack. Archives of Mechanics, 63(3), 267-286. open in new tab
  21. Kim, C. I., Schiavone, P., & Ru, C. Q. (2011). Effect of surface elasticity on an interface crack in plane deformations. Proceedings of the Royal Society A, 467(2136), 3530-3549. open in new tab
  22. Li, X. F. (2019). Effect of surface elasticity on stress intensity factors near mode-III crack tips. Journal of Mechanics of Materials and Structures, 14(1), 43-60. open in new tab
  23. Lurie, S., Volkov-Bogorodsky, D., Zubov, V., & Tuchkova, N. (2009). Advanced theoretical and numerical multiscale modeling of cohesion/adhesion interac- tions in continuum mechanics and its applications for filled nanocomposites. Computational Materials Science, 45(3), 709-714. open in new tab
  24. Mishuris, G., Öchsner, A., & Kuhn, G. (2006). FEM-analysis of nonclassical transmission conditions between elastic structures. Part 2: Stiff imperfect interface. CMC: Computers, Materials, & Continua, 4(3), 137-152. open in new tab
  25. Mishuris, G. S. (2003). Mode III interface crack lying at thin nonhomogeneous anisotropic interface. Asymptotics near the crack tip. In IUTAM symposium on asymptotics, singularities and homogenisation in problems of mechanics (pp. 251-260). Springer. open in new tab
  26. Mishuris, G. S., Movchan, N. V., & Movchan, A. B. (2006). Steady-state motion of a mode-III crack on imperfect interfaces. The Quarterly Journal of Mechanics & Applied Mathematics, 59(4), 487-516. open in new tab
  27. Mishuris, G. S., Movchan, N. V., & Movchan, A. B. (2010). Dynamic mode-III interface crack in a bi-material strip. International Journal of Fracture, 166(1-2), 121-133. open in new tab
  28. Piccolroaz, A., & Mishuris, G. (2013). Integral identities for a semi-infinite interfacial crack in 2D and 3D elasticity. Journal of Elasticity, 110(2), 117-140. open in new tab
  29. Piccolroaz, A., Mishuris, G., & Movchan, A. B. (2009). Symmetric and skew-symmetric weight functions in 2D perturbation models for semi-infinite interfa- cial cracks. Journal of the Mechanics and Physics of Solids, 57(9), 1657-1682. open in new tab
  30. Povstenko, Y. Z. (1991). Generalizations of laplace and young equations involving couples. Journal of Colloid and Interface Science, 144(2), 497-506. open in new tab
  31. Ru, C. Q. (2010). Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions. science china physics. Mechanics and Astronomy, 53(3), 536-544. open in new tab
  32. Schiavone, P., & Ru, C. Q. (2009). Solvability of boundary value problems in a theory of plane-strain elasticity with boundary reinforcement. International Journal of Engineering Science, 47(11), 1331-1338. open in new tab
  33. Sigaeva, T., & Schiavone, P. (2014). Solvability of a theory of anti-plane shear with partially coated boundaries. Archives of Mechanics, 66(2), 113-125. open in new tab
  34. Steigmann, D. J., & Ogden, R. W. (1997). Plane deformations of elastic solids with intrinsic boundary elasticity. Proceedings of the Royal Society A, 453(1959), 853-877. open in new tab
  35. Steigmann, D. J., & Ogden, R. W. (1999). Elastic surface-substrate interactions. Proceedings of the Royal Society A, 455(1982), 437-474. open in new tab
  36. Walton, J. R. (2012). A note on fracture models incorporating surface elasticity. Journal of Elasticity, 109(1), 95-102. open in new tab
  37. Wang, C., & Wang, X. (2017). A mode III rate-dependent bridged crack with surface elasticity. Mechanics of Materials, 108, 107-119. open in new tab
  38. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Zhang, G., Wang, W., & Wang, T. (2011). Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sinica, 24, 52-82. open in new tab
  39. Wang, X. (2015). A mode III arc-shaped crack with surface elasticity. zeitschrift für angewandte. Mathematik und Physik, 66(4), 1987-2000. open in new tab
  40. Wang, X., & Schiavone, P. (2015). Two circular inclusions with arbitrarily varied surface effects. Acta Mechanica, 226(5), 1471-1486. open in new tab
  41. Wang, X., & Schiavone, P. (2016). Bridged cracks of mode III with surface elasticity. Mechanics of Materials, 95, 125-135. open in new tab
  42. Wang, X., & Schiavone, P. (2016). A mode-III crack with variable surface effects. Journal of Theoretical and Applied Mechanics, 54(4), 1319-1327. open in new tab
  43. Xu, J. Y., & Dong, C. Y. (2016). Surface and interface stress effects on the interaction of nano-inclusions and nano-cracks in an infinite domain under anti-plane shear. International Journal of Mechanical Sciences, 111, 12-23. open in new tab
  44. Zemlyanova, A. Y. (2016). Curvilinear mode-I/mode-II interface fracture with a curvature-dependent surface tension on the boundary. IMA Journal of Applied Mathematics, 81(6), 1112-1136. open in new tab
  45. Zemlyanova, A. Y. (2017). A straight mixed mode fracture with the Steigmann-Ogden boundary condition. The Quarterly Journal of Mechanics and Applied Mathematics, 70(1), 65-86. open in new tab
Verified by:
Gdańsk University of Technology

seen 35 times

Recommended for you

Meta Tags