Pantographic metamaterials: an example of mathematically driven design and of its technological challenges - Publication - Bridge of Knowledge

Search

Pantographic metamaterials: an example of mathematically driven design and of its technological challenges

Abstract

In this paper, we account for the research efforts that have been started, for some among us, already since 2003, and aimed to the design of a class of exotic architectured, optimized (meta) materials. At the first stage of these efforts, as it often happens, the research was based on the results of mathematical investigations. The problem to be solved was stated as follows: determine the material (micro)structure governed by those equations that specify a desired behavior. Addressing this problem has led to the synthesis of second gradient materials. In the second stage, it has been necessary to develop numerical integration schemes and the corresponding codes for solving, in physically relevant cases, the chosen equations. Finally, it has been necessary to physically construct the theoretically synthesized microstructures. This has been possible by means of the recent developments in rapid prototyping technologies, which allow for the fabrication of some complex (micro)structures considered, up to now, to be simply some mathematical dreams. We show here a panorama of the results of our efforts (1) in designing pantographic metamaterials, (2) in exploiting the modern technology of rapid prototyping, and (3) in the mechanical testing of many real prototypes. Among the key findings that have been obtained, there are the following ones: pantographic metamaterials (1) undergo very large deformations while remaining in the elastic regime, (2) are very tough in resisting to damage phenomena, (3) exhibit robust macroscopic mechanical behavior with respect to minor changes in their microstructure and micromechanical properties, (4) have superior strength to weight ratio, (5) have predictable damage behavior, and (6) possess physical properties that are critically dictated by their geometry at the microlevel.

Citations

  • 2 6 8

    CrossRef

  • 0

    Web of Science

  • 2 8 4

    Scopus

Authors (34)

  • Photo of Dr. hab. Prof. Francesco dell'Isola

    Francesco dell'Isola Dr. hab. Prof.

  • Photo of Dr. hab. Prof Pierre Seppecher

    Pierre Seppecher Dr. hab. Prof

  • Photo of Dr.hab. Prof Jean Jacques Alibert

    Jean Jacques Alibert Dr.hab. Prof

  • Photo of Dr. hab. Prof. Tomasz Lekszycki

    Tomasz Lekszycki Dr. hab. Prof.

  • Photo of  Grygoruk Roman

    Grygoruk Roman

  • Photo of Dr. Marek Pawlikowski

    Marek Pawlikowski Dr.

  • Photo of Professor David Steigmann

    David Steigmann Professor

  • Photo of Dr. Ivan Giorgio

    Ivan Giorgio Dr.

  • Photo of Dr.hab. Prof. Ugo Andreaus

    Ugo Andreaus Dr.hab. Prof.

  • Photo of Dr. hab. Prof. Emilio Turco

    Emilio Turco Dr. hab. Prof.

  • Photo of  Maciej Gołaszewski

    Maciej Gołaszewski

  • Photo of Dr.hab. Prof. Nicola Rizzi

    Nicola Rizzi Dr.hab. Prof.

  • Photo of Dr.hab. Prof. Claude Boutin

    Claude Boutin Dr.hab. Prof.

  • Photo of Prof. Anil Misra

    Anil Misra Prof.

  • Photo of Dr. hab. Luca Placidi

    Luca Placidi Dr. hab.

  • Photo of  Emilio Barchiesi

    Emilio Barchiesi

  • Photo of Dr. Leopoldo Greco

    Leopoldo Greco Dr.

  • Photo of Dr. hab. Professor Massimo Cuomo

    Massimo Cuomo Dr. hab. Professor

  • Photo of Dr.hab. Prof. Antonio Antonio

    Antonio Antonio Dr.hab. Prof.

  • Photo of Dr. Alessandro Della Corte

    Alessandro Della Corte Dr.

  • Photo of  Antonio Battista

    Antonio Battista

  • Photo of Dr. Daria Scerrato

    Daria Scerrato Dr.

  • Photo of Dr. Inna Eremeeva

    Inna Eremeeva Dr.

  • Photo of  Yosra Rahali

    Yosra Rahali

  • Photo of Dr.hab. Prof. Jean-François Ganghoffer

    Jean-François Ganghoffer Dr.hab. Prof.

  • Photo of Dr.hab. Prof. Wolfgang Müller

    Wolfgang Müller Dr.hab. Prof.

  • Photo of Dr. Gregor Ganzosch

    Gregor Ganzosch Dr.

  • Photo of  Mario Spagnuolo

    Mario Spagnuolo

  • Photo of  Aron Pfaff

    Aron Pfaff

  • Photo of Dr. Katarzyna Barcz

    Katarzyna Barcz Dr.

  • Photo of Dr. Klaus Hoschke

    Klaus Hoschke Dr.

  • Photo of Dr. Jan Neggers

    Jan Neggers Dr.

  • Photo of Dr. François Hild

    François Hild Dr.

Cite as

Full text

download paper
downloaded 151 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
CONTINUUM MECHANICS AND THERMODYNAMICS no. 31, pages 851 - 884,
ISSN: 0935-1175
Language:
English
Publication year:
2018
Bibliographic description:
Dell'Isola F., Seppecher P., Alibert J., Lekszycki T., Roman G., Pawlikowski M., Steigmann D., Giorgio I., Andreaus U., Turco E., Gołaszewski M., Rizzi N., Boutin C., Eremeev V., Misra A., Placidi L., Barchiesi E., Greco L., Cuomo M., Antonio A., Della Corte A., Battista A., Scerrato D., Eremeeva I., Rahali Y., Ganghoffer J., Müller W., Ganzosch G., Spagnuolo M., Pfaff A., Barcz K., Hoschke K., Neggers J., Hild F.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges// CONTINUUM MECHANICS AND THERMODYNAMICS. -Vol. 31, (2018), s.851-884
DOI:
Digital Object Identifier (open in new tab) 10.1007/s00161-018-0689-8
Bibliography: test
  1. F. dell'Isola, D. Steigmann, and A. Della Corte. Synthesis of brous complex structures: Designing microstruc- ture to deliver targeted macroscale response. Applied Mechanics Reviews, 67(6):060804, 2015.
  2. Graeme Milton, Marc Briane, and Davit Harutyunyan. On the possible eective elasticity tensors of 2- dimensional and 3-dimensional printed materials. Mathematics and Mechanics of Complex Systems, 5(1):41 94, 2017. open in new tab
  3. Victor A Eremeyev and Wojciech Pietraszkiewicz. Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Mathematics and Mechanics of Solids, 21(2):210221, 2016.
  4. Albrecht Bertram and Rainer Glüge. Gradient materials with internal constraints. Mathematics and Me- chanics of Complex Systems, 4(1):115, 2016. open in new tab
  5. Lucio Russo. The forgotten revolution: how science was born in 300 BC and why it had to be reborn. Springer Science & Business Media, 2013.
  6. Stephen M Stigler. Stigler's law of eponymy. Transactions of the New York Academy of Sciences, 39(1 Series II):147157, 1980.
  7. F. dell'Isola, U. Andreaus, and L. Placidi. At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola. Mathematics and Mechanics of Solids, 20(8):887928, 2015.
  8. F. dell'Isola, A. Della Corte, and I. Giorgio. Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Mathematics and Mechanics of Solids, 22(4):852872, 2017.
  9. D. Del Vescovo and I. Giorgio. Dynamic problems for metamaterials: review of existing models and ideas for further research. International Journal of Engineering Science, 80:153172, 2014.
  10. F. dell'Isola, T. Lekszycki, M. Pawlikowski, R. Grygoruk, and L. Greco. Designing a light fabric metamaterial being highly macroscopically tough under directional extension: rst experimental evidence. Zeitschrift für angewandte Mathematik und Physik, 66:34733498, 2015.
  11. J-J. Alibert, P. Seppecher, and F. dell'Isola. Truss modular beams with deformation energy depending on higher displacement gradients. Mathematics and Mechanics of Solids, 8(1):5173, 2003. open in new tab
  12. Catherine Pideri and Pierre Seppecher. A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mechanics and Thermodynamics, 9(5):241257, 1997. open in new tab
  13. F. dell'Isola, I. Giorgio, M. Pawlikowski, and N. Rizzi. Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A, 472(2185):23 pages, 2016.
  14. F. dell Isola, P. Seppecher, and A. Della Corte. The postulations á la d alembert and á la cauchy for higher gradient continuum theories are equivalent: a review of existing results. In Proc. R. Soc. A, volume 471, page 20150415. The Royal Society, 2015.
  15. N. Auray, F. dell'Isola, V. Eremeyev, A. Madeo, and G. Rosi. Analytical continuum mechanics à la Hamilton Piola least action principle for second gradient continua and capillary uids. Mathematics and Mechanics of Solids, 20(4):375417, 2015. open in new tab
  16. H. Altenbach and V. Eremeyev. On the linear theory of micropolar plates. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 89(4):242256, 2009. open in new tab
  17. W. Pietraszkiewicz and V. Eremeyev. On natural strain measures of the non-linear micropolar continuum. International Journal of Solids and Structures, 46(3):774787, 2009. open in new tab
  18. Y. Rahali, I. Giorgio, J.F. Ganghoer, and F. dell'Isola. Homogenization à la piola produces second gradient continuum models for linear pantographic lattices. International Journal of Engineering Science, 97:148172, 2015. open in new tab
  19. A. Bilotta, G. Formica, and E. Turco. Performance of a high-continuity nite element in three-dimensional elasticity. International Journal for Numerical Methods in Biomedical Engineering, 26(9):11551175, 2010. open in new tab
  20. A. Cazzani, M. Malagù, and E. Turco. Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mechanics and Thermodynamics, 28(1-2):139156, 2016. open in new tab
  21. M de Saint-Venant. Mémoire sur la torsion des prismes: avec des considérations sur leur exion ainsi que sur l'équilibre intérieur des solides élastiques en général: et des formules pratiques pour le calcul de leur résistance à divers eorts s' exerçant simultanément. Imprimerie nationale, 1856.
  22. RD Mindlin and HF Tiersten. Eects of couple-stresses in linear elasticity. Archive for Rational Mechanics and analysis, 11(1):415448, 1962. open in new tab
  23. OW Dillon and P Perzyna. Gradient theory of materials with memory and internal changes. ARCHIVES OF MECHANICS, 24(5-6):727747, 1972.
  24. H Abdoul-Anziz and Pierre Seppecher. Strain gradient and generalized continua obtained by homogenizing frame lattices. 2017.
  25. Emilio Turco, Ivan Giorgio, Anil Misra, and Francesco dell'Isola. King post truss as a motif for internal structure of (meta) material with controlled elastic properties. Open Science, 4(10):171153, 2017. open in new tab
  26. G.C. Everstine and A.C. Pipkin. Boundary layers in ber-reinforced materials. J. Appl. Mech., 40:518522, 1973. Pantographic metamaterials 39 open in new tab
  27. M.G. Hilgers and A.C. Pipkin. Elastic sheets with bending stiness. Q. J. Mech. Appl. Math., 45:5775, 1992. open in new tab
  28. M.G. Hilgers and A.C. Pipkin. Energy-minimizing deformations of elastic sheets with bending stiness. J. Elast., 31:125139, 1993. open in new tab
  29. M.G. Hilgers and A.C. Pipkin. Bending energy of highly elastic membranes ii. Q. Appl. Math, 54:307316, 1996. open in new tab
  30. M.Z. Hu, H. Kolsky, and A.C. Pipkin. Bending theory for ber-reinforced beams. J. Compos. Mater, pages 235249, 1985. open in new tab
  31. A.C. Pipkin. Generalized plane deformations of ideal ber-reinforced materials. Q. Appl. Math, 32:253263, 1974. open in new tab
  32. A.C. Pipkin. Energy changes in ideal ber-reinforced composites. Q. Appl. Math, 35:455463, 1978. open in new tab
  33. A.C. Pipkin. Some developments in the theory of inextensible networks. Q. Appl. Math, 38:343355, 1980. open in new tab
  34. F. dell'Isola, M.V. d'Agostino, A. Madeo, P. Boisse, and D. Steigmann. Minimization of shear energy in two dimensional continua with two orthogonal families of inextensible bers: the case of standard bias extension test. Journal of Elasticity, 122(2):131155, 2016.
  35. L. Placidi, L. Greco, S. Bucci, E. Turco, and N.L. Rizzi. A second gradient formulation for a 2d fabric sheet with inextensible bres. Zeitschrift für angewandte Mathematik und Physik, 67(5)(114), 2016. open in new tab
  36. RS Rivlin. Plane strain of a net formed by inextensible cords. In Collected Papers of RS Rivlin, pages 511534. Springer, 1997. open in new tab
  37. I. Giorgio. Numerical identication procedure between a micro-cauchy model and a macro-second gradient model for planar pantographic structures. Zeitschrift für angewandte Mathematik und Physik, 67(4)(95), 2016. open in new tab
  38. E. Turco, F. dell'Isola, A. Cazzani, and N.L. Rizzi. Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift für angewandte Mathematik und Physik, 67:28 pages, 2016. open in new tab
  39. Victor A Eremeyev, Francesco dell'Isola, Claude Boutin, and David Steigmann. Linear pantographic sheets: existence and uniqueness of weak solutions. 2017.
  40. L. Placidi, E. Barchiesi, E. Turco, and N.L. Rizzi. A review on 2D models for the description of pantographic fabrics. Zeitschrift für angewandte Mathematik und Physik, 67(5)(121), 2016. open in new tab
  41. F. dell'Isola and D.J. Steigmann. A two-dimensional gradient-elasticity theory for woven fabrics. J. Elasticity, 18:113125, 2015.
  42. I. Giorgio, R. Grygoruk, F. dell'Isola, and D.J. Steigmann. Pattern formation in the three-dimensional deformations of bered sheets. Mechanics Research Communications, 69:164171, 2015. open in new tab
  43. I. Giorgio, N.L. Rizzi, and E. Turco. Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. A, page 21 pages, 2017 (http://dx.doi.org/10.1098/rspa.2017.0636). open in new tab
  44. N. Auray, J. Dirrenberger, and G. Rosi. A complete description of bi-dimensional anisotropic strain-gradient elasticity. International Journal of Solids and Structures, 69:195206, 2015. open in new tab
  45. C. Boutin, F. dell'Isola, I. Giorgio, and L. Placidi. Linear pantographic sheets: Asymptotic micro-macro models identication. Mathematics and Mechanics of Complex Systems, 5(2):127162, 2017. open in new tab
  46. L. Placidi, U. Andreaus, A. Della Corte, and T. Lekszycki. Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coecients. Zeitschrift für angewandte Mathematik und Physik, 66(6):36993725, 2015. open in new tab
  47. L. Placidi, E. Barchiesi, and A. Battista. An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations. In Mathematical Modelling in Solid Mechanics, pages 193210. Springer, 2017. open in new tab
  48. D. Scerrato, I.A. Zhurba Eremeeva, T. Lekszycki, and N.L. Rizzi. On the eect of shear stiness on the plane deformation of linear second gradient pantographic sheets. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 96(11):12681279, 2016. open in new tab
  49. F. dell'Isola, I. Giorgio, and U. Andreaus. Elastic pantographic 2d lattices: a numerical analysis on static response and wave propagation. In Proceedings of the Estonian Academy of Sciences, volume 64, pages 219225, 2015.
  50. F. dell'Isola, A. Della Corte, I. Giorgio, and D. Scerrato. Pantographic 2D sheets: Discussion of some numerical investigations and potential applications. International Journal of Non-Linear Mechanics, 80:200208, 2016.
  51. A. Madeo, A. Della Corte, L. Greco, and P. Ne. Wave propagation in pantographic 2d lattices with internal discontinuities. arXiv preprint arXiv:1412.3926, 2014. open in new tab
  52. E. Turco, F. dell'Isola, N.L. Rizzi, R. Grygoruk, W.H. Müller, and C. Liebold. Fiber rupture in sheared planar pantographic sheets: Numerical and experimental evidence. Mechanics Research Communications, 76:8690, 2016. open in new tab
  53. M. Spagnuolo, K. Barcz, A. Pfa, F. dell'Isola, and P. Franciosi. Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mechanics Research Communications, 2017. open in new tab
  54. G. Ganzosch, F. dell'Isola, e. Turco, T. Lekszycki, and W.H. Müller. Shearing tests applied to pantographic structures. Acta Polytechnica CTU Proceedings, 7:16, 2016. 40 open in new tab
  55. Francesco dell'Isola et al.
  56. E. Turco, M. Golaszewski, I. Giorgio, and F. D'Annibale. Pantographic lattices with non-orthogonal bres: Experiments and their numerical simulations. Composites Part B: Engineering, 118:114, 2017. open in new tab
  57. Michael A Sutton, Jean Jose Orteu, and Hubert Schreier. Image correlation for shape, motion and deforma- tion measurements: basic concepts, theory and applications. Springer Science & Business Media, 2009.
  58. Francois Hild and Stéphane Roux. Digital image correlation. Wiley-VCH, Weinheim, 2012. open in new tab
  59. Zvonimir Tomi£ev¢, François Hild, and Stéphane Roux. Mechanics-aided digital image correlation. The Journal of Strain Analysis for Engineering Design, 48(5):330343, 2013.
  60. Hugo Leclerc, Jean-Noël Périé, Stéphane Roux, and François Hild. Integrated digital image correlation for the identication of mechanical properties. In International Conference on Computer Vision/Computer Graphics Collaboration Techniques and Applications, pages 161171. Springer, 2009. open in new tab
  61. François Hild, Stéphane Roux, Renaud Gras, Néstor Guerrero, Maria Eugenia Marante, and Julio Flórez- López. Displacement measurement technique for beam kinematics. Optics and Lasers in Engineering, 47(3):495503, 2009. open in new tab
  62. François Hild and Stéphane Roux. Comparison of local and global approaches to digital image correlation. Experimental Mechanics, 52(9):15031519, 2012. open in new tab
Verified by:
Gdańsk University of Technology

seen 343 times

Recommended for you

Meta Tags