Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation - Publication - Bridge of Knowledge

Search

Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation

Abstract

This paper presents an algorithm for the measurement of the human heart rate, using photoplethysmography (PPG), i.e., the detection of the light at the skin surface. The signal from the PPG sensor is processed in time-domain; the peaks in the preprocessed and conditioned PPG waveform are detected by using a peak detection algorithm to find the heart rate in real time. Apart from the PPG sensor, the accelerometer is also used to detect body movement and to indicate the moments in time, for which the PPG waveform can be unreliable. This paper describes in detail the signal conditioning path and the modified algorithm, and it also gives an example of implementation in a resource-constrained wrist-wearable device. The algorithm was evaluated by using the publicly available PPG-DaLia dataset containing samples collected during real-life activities with a PPG sensor and accelerometer and with an ECG signal as ground truth. The quality of the results is comparable to the other algorithms from the literature, while the required hardware resources are lower, which can be significant for wearable applications.

Citations

  • 1 9

    CrossRef

  • 1 4

    Web of Science

  • 1 7

    Scopus

Cite as

Full text

download paper
downloaded 58 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
SENSORS no. 20,
ISSN: 1424-8220
Language:
English
Publication year:
2020
Bibliographic description:
Wójcikowski M., Pankiewicz B.: Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation// SENSORS -Vol. 20,iss. 6 (2020), s.1783-
DOI:
Digital Object Identifier (open in new tab) 10.3390/s20061783
Bibliography: test
  1. Rault, T.; Bouabdallah, A.; Challal, Y.; Marin, F. A survey of energy-efficient context recognition systems using wearable sensors for healthcare applications. Pervasive Mob. Comput. 2017, 37, 23-44. open in new tab
  2. Szczepański, A.; Saeed, K. A Mobile Device System for Early Warning of ECG Anomalies. Sensors 2014, 14, 11031-11044, doi:10.3390/s140611031. open in new tab
  3. Hertzman A B. Observations on the finger volume pulse recorded photoelectrically. Am. J. Physiol. 1937, 119, 334-335. open in new tab
  4. Biswas, D.; Simões-Capela, N.; Van Hoof, C.; Van Helleputte, N.; Simues-Capela, N. Heart Rate Estimation from Wrist-Worn Photoplethysmography: A Review. IEEE Sensors J. 2019, 19, 6560-6570. open in new tab
  5. Jacobson, M. Auto-threshold peak detection in physiological signals. In Proceedings of the 2001 open in new tab
  6. Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 25-28 October 2001, doi:10.1109/IEMBS.2001.1017206. open in new tab
  7. Pan J.; Tompkins W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng.1985, 32, 230-236, Mar. 1985, doi:10.1109/TBME.1985.325532. open in new tab
  8. Du, P.; Kibbe, W.A.; Lin, S.M. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinform 2006, 22, 2059-2065. open in new tab
  9. Benitez, D.; Gaydecki, P.; Zaidi, A.; Fitzpatrick, A.P. The use of the Hilbert transform in ECG signal analysis. Comput. Boil. Med. 2001, 31, 399-406, doi:10.1016/S0010-4825(01)00009-9. open in new tab
  10. Aboy, M.; McNames, J.; Thong, T.; Tsunami, D.; Ellenby, M.; Goldstein, B. An Automatic Beat Detection Algorithm for Pressure Signals. IEEE Trans. Biomed. Eng. 2005, 52, 1662-1670, doi:10.1109/TBME.2005.855725. open in new tab
  11. Tzallas, A.T.; Oikonomou, V.P.; I Fotiadis, D. Epileptic Spike Detection Using a Kalman Filter Based Approach. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August-3 September 2006, Vol. 1, pp. 501-504, doi:10.1109/IEMBS.2006.260780. open in new tab
  12. Coast, D.A.; Stern, R.; Cano, G.G.; A Briller, S. An approach to cardiac arrhythmia analysis using hidden Markov models. IEEE Trans. Biomed. Eng. 1990, 37, 826-836, doi:10.1109/10.58593. open in new tab
  13. Xue, Q.; Hu, Y.H.; Tompkins, W.J. Neural-network-based adaptive matched filtering for QRS detection. IEEE Trans. Biomed. Eng. 1992, 39, 317-329, doi: 10.1109/10.126604. open in new tab
  14. Mashhadi, M.B.; Asadi, E.; Eskandari, M.; Kiani, S.; Marvasti, F.; Boloursaz, M. Heart Rate Tracking using Wrist-Type Photoplethysmographic (PPG) Signals during Physical Exercise with Simultaneous Accelerometry. IEEE Signal Process. Lett. 2015, 23, 227-231, doi:10.1109/LSP.2015.2509868. open in new tab
  15. Salehizadeh, S.M.A.; Dao, D.; Bolkhovsky, J.; Cho, C.; Mendelson, Y.; Chon, K.H. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor. Sensors 2016, 16, 10. open in new tab
  16. Reiss, A.; Indlekofer, I.; Schmidt, P.; Van Laerhoven, K. Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks. Sensors 2019, 19, 3079. open in new tab
  17. Sumukha, B.N.; Kumar, R.C.; Bharadwaj, S.S.; George, K. Online peak detection in photoplethysmogram signals using sequential learning algorithm. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14-19 May 2017; pp. 1313-1320, doi:10.1109/IJCNN.2017.7966004. open in new tab
  18. Vijaya, G.; Kumar, V.; Verma, H.K. ANN-based QRS-complex analysis of ECG. J. Med Eng. Technol. 1998, 22, 160-167, doi:10.3109/03091909809032534. open in new tab
  19. Ghamari, M.; Castaneda, D.; Esparza, A.; Soltanpur, C.; Nazeran, H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 2018, 4, 195-202, doi:10.15406/ijbsbe.2018.04.00125. open in new tab
  20. Scholkmann, F.; Boss, J.; Wolf, M. An Efficient Algorithm for Automatic Peak Detection in Noisy Periodic and Quasi-Periodic Signals. Algorithms 2012, 5, 588-603. 20. Nasal ALAR SpO2 Pulse Oximetry Sensor, Available online: https://www.pentlandmedical.co.uk/critical-care/nasal-alar-spo2-pulse-oximetry-sensor/ (accessed on 4 February 2020). open in new tab
  21. Hamilton, P. Open source ECG analysis. Computers in Cardiology 2003, 101-104, doi: 10.1109/CIC.2002.1166717. open in new tab
  22. Zhang, Z. Photoplethysmography-Based Heart Rate Monitoring in Physical Activities via Joint Sparse Spectrum Reconstruction. IEEE Trans. Biomed. Eng. 2015, 62, 1902-1910. open in new tab
  23. Schack, T.; Muma, M.; Zoubir, A.M. Computationally efficient heart rate estimation during physical exercise using photoplethysmographic signals. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO); open in new tab
  24. Kos, Greece, 28 August-2 September 2017, pp. 2478-2481.
  25. Falter, M.; Budts, W.; Goetschalckx, K.; Cornelissen, V.; Buys, R.; Shcherbina, A.; Goessler, K.; Boudreaux, B.; Goris, J. Accuracy of Apple Watch Measurements for Heart Rate and Energy Expenditure in Patients With Cardiovascular Disease: Cross-Sectional Study. JMIR mHealth uHealth 2019, 7, e11889, doi:10.2196/11889. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 116 times

Recommended for you

Meta Tags