Porous structures in aspects of transpirating cooling of oxycombustion chamber walls - Publication - Bridge of Knowledge

Search

Porous structures in aspects of transpirating cooling of oxycombustion chamber walls

Abstract

A wet oxycombustion chamber, which must be effectively cooled due to high temperature evolved during the oxy-combustion process, by using the phenomena of Reynolds thermal transpiration and Navier slip velocity. Closures needed to execute mass flow rate in a microchannel, which should be treated as a single porous structure in the walls of the combustion chamber, have been obtained by applying a local 3D approach. The Navier-Stokes model of the surface layer, which has been proposed and implemented, and presented in numerous publications has been used. The most important part was the incorporation of the thermal mobility force into the commercial code. The Computational Fluid Dynamic simulation of the benchmark experiment has been performed for basic data corresponding to helium. An original and easyto- implement method has been developed to numerically confirm that at the final equilibrium zero-flow state there is connection between the Poiseuille flow in the centre of channel and the counter thermal transpiration flow at the surface. Therefore, the numerical implementation of the Reynolds model of thermal transpiration and its usefulness for the description of the benchmark experiment has been established. Additionally, taking Reynolds’, Navier’s and Poiseuille’s solution into consideration for round capillary pipe flow, the flow enhancement due to the temperature difference at the surface and the presence of a drop (slip), can be easily identified. Nevertheless, these issues demand further work and calibration through dedicated experiment.

Citations

  • 4

    CrossRef

  • 0

    Web of Science

  • 8

    Scopus

Cite as

Full text

download paper
downloaded 35 times
Publication version
Accepted or Published Version
License
Copyright (2019 Author(s))

Keywords

Details

Category:
Articles
Type:
publikacja w in. zagranicznym czasopiśmie naukowym (tylko język obcy)
Published in:
AIP Conference Proceedings no. 2077, pages 1 - 10,
ISSN: 0094-243X
Language:
English
Publication year:
2019
Bibliographic description:
Ziółkowski P.. Porous structures in aspects of transpirating cooling of oxycombustion chamber walls. AIP Conference Proceedings, 2019, Vol. 2077, , s.1-10
DOI:
Digital Object Identifier (open in new tab) 10.1063/1.5091926
Bibliography: test
  1. J. Badur, M. Karcz, M. Lemański and L. Nastałek, CMES: Computer Modeling in Engineering & Sciences 73, 299-310 (2011). doi:10.3970/cmes.2011.073.299. open in new tab
  2. J. Badur, M. Karcz and M. Lemański, Microfluidics and Nanofluidics 11, 439-449 (2011). open in new tab
  3. P. Ziółkowski and J. Badur, Archives of Mechanics, 70, 3, 269-300 (2018).
  4. J. Badur, Development of Energy Concept, IMP PAN Publishers, Gdansk, 2009. (in Polish).
  5. J. Badur, P. Ziółkowski, W. Zakrzewski, D. Sławiński, M. Banaszkiewicz, O. Kaczmarczyk, S. Kornet and P.J. Ziółkowski, On the surface vis impressa caused by a fluid-solid contact, [in]: Shell Structure Theory and Applications, red. W. Pietraszkiewicz & J. Górski 3, 53-56, (2014). open in new tab
  6. J.R. Bielenberg and H. Brenner Journal of Fluid Mechanics, 546, 1-23 (2006). open in new tab
  7. D.L. Morris, A. Hannon and A.L. Garcia Physical Review A, 46, 5279-5282 (1992). open in new tab
  8. E.B. Arkilic, M.A. Schmidt and K.S. Breuer Journal of Microelectromechanical Systems 6, 167-178, (1997). open in new tab
  9. G.L. Morini, M. Lorenzi, M. Spiga Microfluidics and Nanofluidics 1, 190-196, (2005). open in new tab
  10. J. Pitakarnnop, S. Varoutis, D. Valougergis, S. Geoffroy, L. Baldas and S. Colin, Microfluidics and Nanofluidics 8, 57-72, (2010). open in new tab
  11. G.E. Karniadakis, A. Beskok and N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation, Springer, New York, 2005.
  12. T. Graham, Philosophical Transactions of the Royal Society of London 131, 573-632 (1846). open in new tab
  13. T. Graham, Philosophical Transactions of the Royal Society of London 137, 349-362 (1849). open in new tab
  14. O. Reynolds, On the equation of motion and the boundary conditions for viscous fluid (1883), Scientific papers on mechanics and physical subjects Tome 2, 46, 132-137, Cambridge University Press, Cambridge, (1901).
  15. M.V. Smoluchowski, Z. Phys, 17, 557-585 (1916). open in new tab
  16. Z. Bilicki and J. Badur, Journal of Non-Equilibrium Thermodynamics, 28, 145-172 (2003). open in new tab
  17. H. Brenner, Physica, 349, 1/2, 60-132 (2005). open in new tab
  18. F. Yu, L. Zhang, Y. Huang, K. Sun, A. David and V.C. Yang, Biomaterials 31, 5842-5848 (2010). open in new tab
  19. M. Lackowski and H. Nowakowska, Trans. IFFM No. 133, 109-115 (2016).
  20. J. Badur, P. Ziolkowski, D. Slawinski and S.Kornet, "An approach for estimation of water wall degradation within pulverized-coal boilers", Energy 92, 142-152 (2015). open in new tab
  21. J. Badur, P. Ziolkowski, W. Zakrzewski, D. Slawinski, S. Kornet, T. Kowalczyk, J. Hernet, R. Piotrowski, J. Felicjancik and P.J. Ziolkowski, "An advanced Thermal-FSI approach to flow heating/ cooling", Journal of Physics: Conference Series 530, 1-8 (2014). doi:10.1088/1742-6596/530/1/012039. open in new tab
  22. M. Banaszkiewicz, "Multilevel approach to lifetime assessment of steam turbines", International Journal of Fatigue 73, 39-47 (2015). open in new tab
  23. J. Badur, Five lecture of contemporary fluid termomechanics, Gdańsk 2005. (in Polish)
  24. J. Badur, Numerical modeling of sustainable combustion in gas turbine,(IMP PAN Publishers, Gdańsk, 2003).
  25. P. Ziółkowski, W. Zakrzewski, O. Kaczmarczyk, J. Badur, Archives of thermodynamics, 34, 2, 23-38 (2013). open in new tab
  26. P. Ziółkowski, "Thermodynamic analysis of low -emission gas-steam cycles with the use of oxy-combustion" Ph.D. thesis, Institute Fluid Flow Machinery PAS-ci, 2018.
  27. M. Rojas-Cárdenas, I. Graur, P. Perrier and J.G. Meolans, Physics of Fluids, 25, 031702, (2011). open in new tab
  28. P. Ziółkowski, J. Badur, Journal of Physics: Conference Series, 530, 012035 (2014). doi:10.1088/1742- 6596/530/1/012035. open in new tab
  29. J. Badur, P.J. Ziółkowski and P. Ziółkowski, Microfluidics and Nanofluidics, 19, 191-198 (2015). open in new tab
  30. P. Ziółkowski and J. Badur, International Journal of Numerical Methods for Heat and Fluid Flow, 28, 1, 64-80, (2018). https://doi.org/10.1108/HFF-10-2016-0412. open in new tab
  31. J.M. Reese, Y. Zheng and D.A. Lockerby, Journal of Computational and Theoretical Nanoscience, 4, 807-813, (2007). open in new tab
  32. T. Ewart, P. Perrier, P., I. Graur and J.G. Meolans, Microfluidics and Nanofluidics, 3, 689-695 (2007). open in new tab
Verified by:
Gdańsk University of Technology

seen 85 times

Recommended for you

Meta Tags