Preference-based evolutionary multi-objective optimization in ship weather routing - Publication - Bridge of Knowledge

Search

Preference-based evolutionary multi-objective optimization in ship weather routing

Abstract

In evolutionary multi-objective optimization (EMO) the aim is to find a set of Pareto-optimal solutions. Such approach may be applied to multiple real-life problems, including weather routing (WR) of ships. The route should be optimal in terms of passage time, fuel consumption and safety of crew and cargo while taking into account dynamically changing weather conditions. Additionally it must not violate any navigational constraints (neither static nor dynamic). Since the resulting non-dominated solutions might be numerous, some user support must be provided to enable the decision maker (DM) selecting a single ‘‘best’’ solution. Commonly, multi-criteria decision making methods (MCDM) are utilized to achieve this goal with DM’s preferences defined a posteriori. Another approach is to apply DM’s preferences into the very process of finding Pareto-optimal solutions, which is referred to as preference-based EMO. Here the Pareto-set is limited to those solutions, which are compliant with the pre-configured user preferences. The paper presents a new tradeoff-based EMO approach utilizing configurable weight intervals assigned to all objectives. The proposed method has been applied to ship WR problem and compared with a popular reference point method: r-dominance. Presented results prove applicability and competitiveness of the proposed method to solving multi-objective WR problem.

Citations

  • 3 9

    CrossRef

  • 0

    Web of Science

  • 4 0

    Scopus

Cite as

Full text

download paper
downloaded 32 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
APPLIED SOFT COMPUTING no. 84, pages 1 - 21,
ISSN: 1568-4946
Language:
English
Publication year:
2019
Bibliographic description:
Szłapczyńska J., Szłapczyński R.: Preference-based evolutionary multi-objective optimization in ship weather routing// APPLIED SOFT COMPUTING -Vol. 84, (2019), s.1-21
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.asoc.2019.105742
Bibliography: test
  1. M.-C. Tsou, H.-C. Cheng, An ant colony algorithm for efficient ship routing, Polish Marit. Res. 20 (2013) 28-38, http://dx.doi.org/10.2478/pomr-2013- 0032. open in new tab
  2. S. Chaudhuri, K. Deb, An interactive evolutionary multi-objective opti- mization and decision making procedure, Appl. Soft Comput. J. 10 (2010) 496-511, http://dx.doi.org/10.1016/j.asoc.2009.08.019. open in new tab
  3. H. Lu, R. Zhou, Z. Fei, J. Shi, A multi-objective evolutionary algorithm based on Pareto prediction for automatic test task scheduling problems, Appl. Soft Comput. 66 (2018) 394-412, http://dx.doi.org/10.1016/J.ASOC.2018.02. 050. open in new tab
  4. P. Fattahi, V. Hajipour, A. Nobari, A bi-objective continuous review in- ventory control model: Pareto-based meta-heuristic algorithms, Appl. Soft Comput. 32 (2015) 211-223, http://dx.doi.org/10.1016/J.ASOC.2015.02.044. open in new tab
  5. B. Min, C. Park, I. Jang, J.M. Kang, S. Chung, Development of Pareto- based evolutionary model integrated with dynamic goal programming and successive linear objective reduction, Appl. Soft Comput. 35 (2015) 75-112, http://dx.doi.org/10.1016/J.ASOC.2015.06.007. open in new tab
  6. R. Szlapczynski, P. Krata, Determining and visualizing safe motion param- eters of a ship navigating in severe weather conditions, Ocean Eng. 158 (2018) http://dx.doi.org/10.1016/j.oceaneng.2018.03.092. open in new tab
  7. A.C. Bukhari, I. Tusseyeva, B.G. Lee, Y.G. Kim, An intelligent real-time multi- vessel collision risk assessment system from VTS view point based on fuzzy inference system, Expert Syst. Appl. 40 (2013) 1220-1230, http: //dx.doi.org/10.1016/j.eswa.2012.08.016. open in new tab
  8. J. Lisowski, Game control methods in avoidance of ships collisions, Polish Marit. Res. 19 (2012) 3-10, http://dx.doi.org/10.2478/v10012-012-0016-4. open in new tab
  9. A. Lazarowska, A new deterministic approach in a decision support system for ship's, Expert Syst. Appl. (2016) 1-10, http://dx.doi.org/10.1016/j.eswa. 2016.11.005. open in new tab
  10. R.W. James, Application of Wave Forecasts To Marine Navigation, 1957.
  11. H. Hagiwara, J.A. Spaans, Practical weather routing of sail-assisted motor vessels, J. Navig. 40 (1987) 96-119, http://dx.doi.org/10.1017/ S0373463300000333. open in new tab
  12. R.H. Motte, S. Calvert, On the selection of discrete grid systems for on- board micro-based weather routeing, J. Navig. 43 (1990) 104-117, http: //dx.doi.org/10.1017/S0373463300013849. open in new tab
  13. C. de Wit, Proposal for low cost ocean weather routeing, J. Navig. 43 (1990) 428-439, http://dx.doi.org/10.1017/S0373463300014053. open in new tab
  14. S. Wei, P. Zhou, Development of a 3D dynamic programming method for weather routing, Int. J. Mar. Navig. Saf. Sea Transp. 6 (2012) 79-85. open in new tab
  15. Y.-C. Chang, R.-S. Tseng, G.-Y. Chen, P.C. Chu, Y.-T. Shen, Ship routing utilizing strong ocean currents, J. Navig. 66 (2013) 825-835, http://dx.doi. org/10.1017/S0373463313000441. open in new tab
  16. S.J. Bijlsma, Minimal time route computation for ships with pre-specified voyage fuel consumption, J. Navig. 61 (2008) 723-733, http://dx.doi.org/ 10.1017/S037346330800492X. open in new tab
  17. G. Mannarini, G. Coppini, P. Oddo, N. Pinardi, A prototype of ship rout- ing decision support system for an operational oceanographic service, TransNav -Int. J. Mar. Navig. Saf. Sea Transp. 7 (2013) 53-59, http: //dx.doi.org/10.12716/1001.07.01.06. open in new tab
  18. G. Mannarini, N. Pinardi, G. Coppini, P. Oddo, A. Iafrati, I. Nazionale, V.D. Creti, VISIR-I: small vessels -least-time nautical routes using wave forecasts, Geosci. Model Dev. 9 (2016) 1597-1625, http://dx.doi.org/10. 5194/gmd-9-1597-2016. open in new tab
  19. M. Zyczkowski, R. Szłapczyński, Multi-objective weather routing of sailing vessels, Polish Marit. Res. 24 (2017) http://dx.doi.org/10.1515/pomr-2017- 0130. open in new tab
  20. M. Zyczkowski, P. Krata, R. Szłapczyński, Multi-objective weather routing of sailboats considering wave resistance, Polish Marit. Res. 25 (2018) 4-12, http://dx.doi.org/10.2478/pomr-2018-0001. open in new tab
  21. M.C. Tsou, Integration of a geographic information system and evolutionary computation for automatic routing in coastal navigation, J. Navig. 63 (2010) 323-341, http://dx.doi.org/10.1017/S0373463309990385. open in new tab
  22. J. Szlapczynska, Multiobjective approach to weather routing, TransNav - Int. J. Mar. Navig. Saf. Sea Transp. 1 (2007) 273-278. open in new tab
  23. S. Marie, E. Courteille, Multi-objective optimization of motor vessel route, TransNav -Int. J. Mar. Navig. Saf. Sea Transp. 3 (2009) 133-141. open in new tab
  24. J. Hinnenthal, G. Clauss, Robust Pareto-optimum routing of ships utilising deterministic and ensemble weather forecasts, Ships Offshore Struct. 5 (2010) 105-114, http://dx.doi.org/10.1080/17445300903210988. open in new tab
  25. R. Vettor, C. Guedes Soares, A Ship Weather Routing Toll to Face the Challenges of an Evolving Maritime Trade, 2015. open in new tab
  26. R. Vettor, C. Guedes Soares, Development of a ship weather routing system, Ocean Eng. 123 (2016) 1-14, http://dx.doi.org/10.1016/j.oceaneng.2016.06. 035. open in new tab
  27. S. Bechikh, M. Kessentini, L. Ben Said, K. Ghédira, Preference incorporation in evolutionary multiobjective optimization: A survey of the state-of-the- art, Adv. Comput. 98 (2015) 141-207, http://dx.doi.org/10.1016/bs.adcom. 2015.03.001. open in new tab
  28. K. Sindhya, K. Miettinen, K. Deb, A hybrid framework for evolutionary multi-objective optimization, IEEE Trans. Evol. Comput. 17 (2013) 495-511, http://dx.doi.org/10.1109/TEVC.2012.2204403. open in new tab
  29. K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solv- ing problems with box constraints, IEEE Trans. Evol. Comput. 18 (2014) 577-601, http://dx.doi.org/10.1109/TEVC.2013.2281535. open in new tab
  30. H. Ishibuchi, R. Imada, Y. Setoguchi, Y. Nojima, Reference point specifi- cation in inverted generational distance for triangular linear Pareto front, IEEE Trans. Evol. Comput. 22 (2018) 961-975, http://dx.doi.org/10.1109/ TEVC.2017.2776226. open in new tab
  31. L. Ben Said, S. Bechikh, K. Ghedira, The r-dominance: A new dominance relation for interactive evolutionary multicriteria decision making, IEEE Trans. Evol. Comput. 14 (2010) 801-818, http://dx.doi.org/10.1109/TEVC. 2010.2041060. open in new tab
  32. A.L. Jaimes, A.A. Montaño, C.A.C. Coello, Preference incorporation to solve many-objective airfoil design problems, in: 2011 IEEE Congr. Evol. Com- put, CEC 2011, 2011, pp. 1605-1612, http://dx.doi.org/10.1109/CEC.2011. 5949807. open in new tab
  33. K. Miettinen, F. Ruiz, A.P. Wierzbicki, Introduction to multiobjective op- timization: Interactive approaches, in: J. Branke, K. Deb, K. Miettinen, R. Słowiński (Eds.), Multiobjective Optim. Interact. Evol. Approaches, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 27-57, http://dx.doi.org/10. 1007/978-3-540-88908-3_2. open in new tab
  34. E. Filatovas, A. Lančinskas, O. Kurasova, J. Žilinskas, A preference-based multi-objective evolutionary algorithm R-NSGA-II with stochastic local search, Cent. Eur. J. Oper. Res. 25 (2017) 859-878, http://dx.doi.org/10. 1007/s10100-016-0443-x. open in new tab
  35. K. Deb, A. Kumar, Light beam search based multi-objective optimization using evolutionary algorithms, in: 2007 IEEE Congr. Evol. Comput. CEC 2007, 2007, pp. 2125-2132, http://dx.doi.org/10.1109/CEC.2007.4424735. open in new tab
  36. H. Trautmann, T. Wagner, D. Brockhoff, R2-EMOA: Focused multiobjective search using R2-indicator-based selection, in: G. Nicosia, P. Pardalos (Eds.), Learn. Intell. Optim, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 70-74. open in new tab
  37. G. Rudolph, O. Schütze, C. Grimme, H. Trautmann, An aspiration set EMOA based on averaged hausdorff distances, in: P.M. Pardalos, M.G.C. Resende, C. Vogiatzis, J.L Walteros (Eds.), Learn. Intell. Optim., Springer International Publishing, Cham, 2014, pp. 153-156. open in new tab
  38. E. Zitzler, D. Brockhoff, L. Thiele, The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration, in: S. open in new tab
  39. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T. Murata (Eds.), Evol. Multi- Criterion Optim., Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 862-876. open in new tab
  40. M.T.M. Emmerich, A.H. Deutz, I. Yevseyeva, On Reference Point Free Weighted Hypervolume Indicators Based on Desirability Functions and their Probabilistic Interpretation, Elsevier B.V., 2014, http://dx.doi.org/10. 1016/j.protcy.2014.10.001. open in new tab
  41. D. Brockhoff, Y. Hamadi, S. Kaci, Using comparative preference statements in hypervolume-based interactive multiobjective optimization to cite this version: Using comparative preference statements in hypervolume-based interactive multiobjective, Learn. Intell. Optim. (2014). open in new tab
  42. J. Branke, S. Corrente, S. Greco, R. Słowiński, P. Zielniewicz, Using choquet integral as preference model in interactive evolutionary multiobjective optimization, European J. Oper. Res. 250 (2016) 884-901, http://dx.doi. org/10.1016/j.ejor.2015.10.027. open in new tab
  43. E. Fernandez, E. Lopez, F. Lopez, C.A. Coello Coello, Increasing selective pressure towards the best compromise in evolutionary multiobjective optimization: The extended NOSGA method, Inf. Sci. (Ny). 181 (2011) 44-56, http://dx.doi.org/10.1016/j.ins.2010.09.007. open in new tab
  44. E. Oliveira, C.H. Antunes, Á. Gomes, A comparative study of different approaches using an outranking relation in a multi-objective evolutionary algorithm, Comput. Oper. Res. 40 (2013) 1602-1615, http://dx.doi.org/10. 1016/j.cor.2011.09.023. open in new tab
  45. S. Bechikh, L. Ben Said, K. Ghédira, Searching for knee regions of the Pareto front using mobile reference points, Soft Comput. 15 (2011) 1807-1823, http://dx.doi.org/10.1007/s00500-011-0694-3. open in new tab
  46. J. Branke, T. Kaußler, H. Schmeck, Guidance in evolutionary multi-objective optimization, Adv. Eng. Softw. 32 (2001) 499-507, http://dx.doi.org/10. 1016/S0965-9978(00)00110-1. open in new tab
  47. D. Cvetković, I.C. Parmee, Preferences and their application in evolutionary multiobjective optimization, IEEE Trans. Evol. Comput. 6 (2002) 42-57, http://dx.doi.org/10.1109/4235.985691. open in new tab
  48. P.K. Shukla, C. Hirsch, H. Schmeck, A framework for incorporating trade-off information using multi-objective evolutionary algorithms, in: R. Schaefer, C. Cotta, J. Kołodziej, G. Rudolph (Eds.), Parallel Probl. Solving from Nature, PPSN XI, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 131-140. open in new tab
  49. Y. Jin, B. Sendhoff, Incorporation of fuzzy preferences into evolutionary multiobjective optimisation, in: Proc. Genet. Evol. Comput. Conf. GECCO, 2002, p. 683.
  50. J. Szlapczynska, Multi-objective weather routing with customised cri- teria and constraints, J. Navig. 68 (2015) http://dx.doi.org/10.1017/ S0373463314000691. open in new tab
  51. P. Krata, J. Szlapczynska, Ship weather routing optimization with dynamic constraints based on reliable synchronous roll prediction, Ocean Eng. 150 (2018) 124-137, http://dx.doi.org/10.1016/j.oceaneng.2017.12.049. open in new tab
  52. P. Krata, J. Szlapczynska, Weather hazard avoidance in modeling safety of motor-driven ship for multicriteria weather routing, in: Methods Algorithms Navig., 2012, http://dx.doi.org/10.1201/b11344-27. open in new tab
  53. E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm, Evol. Methods Des. Optim. Control with Appl. Ind. Probl. (2001) 95-100, http://dx.doi.org/10.1.1.28.7571.
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 154 times

Recommended for you

Meta Tags