Pressure drop related to flow maldistribution in a model minichannel plate heat exchanger - Publication - Bridge of Knowledge

Search

Pressure drop related to flow maldistribution in a model minichannel plate heat exchanger

Abstract

The paper describes the issues related to the pressure drop that accompanies the phenomenon of maldistribution of working fluid between the channels of a model minichannel plate heat exchanger. The research concerns a single exchanger's plate containing 51 (in every geometry) parallel rectangular minichannels of hydraulic diameters 461 µm, 571 µm, 750 µm and 823 µm. In addition, the more complex geometry has been investigated, equipped with additional diagonal channels (so called extended geometry). The moment of the liquid phase transition through the heat exchanger was recorded at the flow rates from 0.83 g/s to 13.33 g/s in the inlet manifold. The article discusses the total pressure drop as a function of the flow rate and the characteristic dimension of minichannels, as well as the pressure drop as a function of the time of the fluid passage through the main part of the measuring section in which measurements were done. The resulting profiles correlate with the images of the flow distribution between channels recorded using the fast shutter speed camera, that allows to draw a further conclusions about the specifics of the maldistribution process. The impact of the total pressure drop on the actual range of optimum operating conditions of the heat exchanger was analyzed.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 1 0

    Scopus

Cite as

Full text

download paper
downloaded 53 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Published in:
Archives of Thermodynamics no. 39, edition 2, pages 123 - 146,
ISSN: 1231-0956
Language:
English
Publication year:
2018
Bibliographic description:
Klugmann M., Dąbrowski P., Mikielewicz D.: Pressure drop related to flow maldistribution in a model minichannel plate heat exchanger// Archives of Thermodynamics. -Vol. 39., iss. 2 (2018), s.123-146
DOI:
Digital Object Identifier (open in new tab) 10.1515/aoter-2018-0015
Bibliography: test
  1. Kays W.M., London A.L.:P Compact Heat Exchangers, Krieger Publishing Com- pany 1984. https://books.google.pl/books?id=A08qAQAAMAAJ open in new tab
  2. Mikielewicz D., Wajs J., Andrzejczyk R., Klugmann M.: Pressure drop of HFE7000 and HFE7100 during flow condensation in minichannels. Int. J. Refrig. 68(2016), 226-241. DOI:10.1016/j.ijrefrig.2016.03.005. open in new tab
  3. Tuckerman D.B., Pease R.F.W.: High-performance heat sinking for VLSI. IEEE Electron Device Lett. 2(1981), 5, 126-129. DOI:10.1109/EDL.1981.25367. open in new tab
  4. Teng J.: Fluid Dynamics in Microchannels. Intechopen 2012, 403-436. DOI:10.1002/9783527631445. open in new tab
  5. Mehendale S.S., Jacobi A.M., Shah R.K.: Fluid flow and heat transfer at micro-and meso-scales with application to heat exchanger design. Appl. Mech. Rev. 53(2000), 7, 175-193. http://dx.doi.org/10.1115/1.3097347 open in new tab
  6. Kandlikar S.G., Grande W.J.: Evolution of microchannel flow passages- thermohydraulic performance and fabrication technology. Heat Trans. Eng. 24(2003), 1, 3-17. DOI:10.1080/01457630304040. open in new tab
  7. Ornatskii A.P., Vinyarskii L.S.: Heat transfer crisis in a forced flow of under- heated water in small-bore tubes. Teplofiz. Vysok. Temp. 3(1965), 441-451.
  8. Sturgis J.C., Mudawar I.: Assessment of CHF enhancement mechanisms in a curved, rectangular channel subjected to concave heating. J. Heat Transfer. 121(1999), 2, 394-404. http://dx.doi.org/10.1115/1.2825992. open in new tab
  9. D.D. Hall, Mudawar I.: Ultra-high critical heat flux (CHF) for subcooled water flow boiling? II: high-CHF database and design equations. Int. J. Heat Mass Tran. 42(1999), 8, 1429-1456. DOI:10.1016/S0017-9310(98)00242-7. open in new tab
  10. Mikielewicz D., Mikielewicz J.: A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP. Appl. Therm. Eng. 30(2010), 16, 2357-2362. DOI:10.1016/j.applthermaleng.2010.05.035. open in new tab
  11. Nacke R., Northcutt B., Mudawar I.: Theory and experimental validation of cross-flow micro-channel heat exchanger module with reference to high Mach aircraft gas turbine engines. Int. J. Heat Mass Tran. 54(2011), 5-6, 1224-1235. DOI:10.1016/j.ijheatmasstransfer.2010.10.028. Elsevier open in new tab
  12. Bahiraei M., Heshmatian S.: Application of a novel biological nanofluid in a liquid block heat sink for cooling of an electronic processor: Thermal performance and irreversibility considerations. Energy Convers. Manag. 149(2017), 155-167. DOI:10.1016/j.enconman.2017.07.020. open in new tab
  13. Ramos-Alvarado B., Feng B., Peterson G.P.: Comparison and optimization of single-phase liquid cooling devices for the heat dissipation of high-power LED arrays. Appl. Therm. Eng. 59(2013), 1-2, 648-659. DOI:10.1016/j.applthermaleng.2013.06.036. open in new tab
  14. Jajja S.A., Ali W., Ali H.M., Ali A.M.: Water cooled minichannel heat sinks for microprocessor cooling: Effect of fin spacing. Appl. Therm. Eng. 64(2014), 1-2, 76-82. DOI:10.1016/j.applthermaleng.2013.12.007. open in new tab
  15. Najim M., Feddaoui M.B.: New cooling approach using successive evaporation and condensation of a liquid film inside a vertical mini-channel. Int. J. Heat Mass Tran. 122(2018), 895-912. DOI:10.1016/j.ijheatmasstransfer.2018.02.034. open in new tab
  16. Brutin D., Ajaev V.S., Tadrist L.: Pressure drop and void fraction during flow boiling in rectangular minichannels in weightlessness. Appl. Therm. Eng. 51(2013), 1-2, 1317-1327. DOI:10.1016/j.applthermaleng.2012.11.017. open in new tab
  17. Zhou J., Zhao X., Ma X., Du Z., Fan Y., Cheng Y., Zhang X.: Clear-days operational performance of a hybrid experimental space heating system employing the novel mini-channel solar thermal & PV/T panels and a heat pump. Sol. Energy. 155(2017), 464-477. DOI:10.1016/j.solener.2017.06.056. open in new tab
  18. Robles A., Duong V., Martin A.J., Guadarrama J.L., Diaz G.: Aluminum minichannel solar water heater performance under year-round weather conditions. Sol. Energy. 110(2014), 356-364. DOI:10.1016/j.solener.2014.09.031. open in new tab
  19. Sakamatapan K., Wongwises S.: Pressure drop during condensation of R134a flowing inside a multiport minichannel. Int. J. Heat Mass Tran. 75(2014), 31-39. DOI:https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.071. open in new tab
  20. JY R., LY L., XS D., RR W., WL P., WM T.: Numerical investiga- tions on characteristics of methane catalytic combustion in micro-channels with a concave or convex wall cavity. Energ. Convers. Manage. 97(2015), 188-195. DOI:10.1016/j.enconman.2015.03.058. open in new tab
  21. Berthier J., Brakke K.A., Furlani E.P., Karampelas I.H., Poher V., Gos- selin D., Cubizolles M., Pouteau P.: Whole blood spontaneous capillary flow in narrow V-groove microchannels. Sensors Actuators, B Chem. 206(2015), 258-267. DOI:10.1016/j.snb.2014.09.040. open in new tab
  22. Zhou P., Tarlet D., Wei M., Fan Y., Luo L.: Novel multi-scale parallel mini- channel contactor for monodisperse water-in-oil emulsification. Chem. Eng. Res. Des. 121(2017), 233-244. DOI:10.1016/j.cherd.2017.03.010. open in new tab
  23. Illán-Gómez F., García-Cascales J.R., Hidalgo-Mompeán F., López- Belchí A.: Experimental assessment of the replacement of a conventional fin-and-tube condenser by a minichannel heat exchanger in an air/water chiller for residential air conditioning. Energy Build. 144(2017), 104-116. DOI:10.1016/j.enbuild.2017.03.041. open in new tab
  24. García-Cascales J.R., Illán-Gómez F., Hidalgo-Mompeán F., Ramírez- Rivera F.A., Ramírez-Basalo M.A.: Performance comparison of an air/water heat pump using a minichannel coil as evaporator in replacement of a fin-and-tube heat exchanger. Int. J. Refrig. 74(2017), 558-573. DOI:10.1016/j.ijrefrig.2016.11.018. open in new tab
  25. W. Zhou, W. Deng, L. Lu, J. Zhang, L. Qin, S. Ma, Y. Tang: Laser micro-milling of microchannel on copper sheet as catalyst support used in mi- croreactor for hydrogen production. Int. J. Hydrogen Energy 39(2014), 4884-4894. DOI:10.1016/j.ijhydene.2014.01.041. open in new tab
  26. Kandlikar S.G.: High Flux Heat Removal with Microchannels -A Roadmap of Challenges and Opportunities. Heat Transfer Eng. 26(2005), 8, 5-14. DOI:10.1080/01457630591003655. open in new tab
  27. Qu W., Mudawar I.: Measurement and prediction of pressure drop in two- phase micro-channel heat sinks. Int. J. Heat Mass Tran. 46(2003), 15, 2737-2753. DOI:10.1016/S0017-9310(03)00044-9. open in new tab
  28. Motyliński K., Kupecki J.: Modeling the dynamic operation of a small fin plate heat exchanger -Parametric analysis. Arch. Thermodyn. 36(2015), 3, 85-103. DOI:10.1515/aoter-2015-0023. open in new tab
  29. Kupecki J., Badyda K.: Mathematical model of a plate fin heat exchanger oper- ating under solid oxide fuel cell working conditions. Arch. Thermodyn. 34(2013), 4, 3-21. DOI:10.2478/aoter-2013-0026. open in new tab
  30. Wajs J., Mikielewicz D., Fornalik-Wajs E.: Thermal performance of a proto- type plate heat exchanger with minichannels under boiling conditions. J. Phys. Conf. Ser. 745(2016), 032063. DOI:10.1088/1742-6596/745/3/032063. open in new tab
  31. Mikielewicz D., Wajs J.: Possibilities of Heat Transfer Augmentation in Heat Exchangers with Minichannels for Marine Applications. Pol. Marit. Res. 24(2017), s1, 133-140. DOI:10.1515/pomr-2017-0031. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 115 times

Recommended for you

Meta Tags