Pressure effects on the electronic structure and superconductivity of (TaNb)0.67(HfZrTi)0.33 high entropy alloy - Publication - Bridge of Knowledge

Search

Pressure effects on the electronic structure and superconductivity of (TaNb)0.67(HfZrTi)0.33 high entropy alloy

Abstract

Effects of pressure on the electronic structure, electron-phonon interaction, and superconductivity of the high entropy alloy ( TaNb ) 0.67 ( HfZrTi ) 0.33 are studied in the pressure range 0–100 GPa. The electronic structure is calculated using the Korringa-Kohn-Rostoker method with the coherent potential approximation. Effects of pressure on the lattice dynamics are simulated using the Debye-Grüneisen model and the Grüneisen parameter at ambient conditions. In addition, the Debye temperature and Sommerfeld electronic heat capacity coefficient were experimentally determined. The electron-phonon coupling parameter λ is calculated using the McMillan-Hopfield parameters and computed within the rigid muffin-tin approximation. We find that the system undergoes the Lifshitz transition, as one of the bands crosses the Fermi level at elevated pressures. The electron-phonon coupling parameter λ decreases above 10 GPa. The calculated superconducting T c increases up to 40–50 GPa and, later, is stabilized at the larger value than for the ambient conditions, in agreement with the experimental findings. Our results show that the experimentally observed evolution of T c with pressure in ( TaNb ) 0.67 ( HfZrTi ) 0.33 can be well explained by the classical electron-phonon mechanism.

Citations

  • 1 6

    CrossRef

  • 0

    Web of Science

  • 1 7

    Scopus

Cite as

Full text

download paper
downloaded 94 times
Publication version
Accepted or Published Version
License
Copyright (2019 American Physical Society)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
PHYSICAL REVIEW B no. 100,
ISSN: 2469-9950
Language:
English
Publication year:
2019
Bibliographic description:
Jasiewicz K., Wiendlocha B., Górnicka K., Gofryk K., Gazda M., Klimczuk T., Tobola J.: Pressure effects on the electronic structure and superconductivity of (TaNb)0.67(HfZrTi)0.33 high entropy alloy// PHYSICAL REVIEW B -Vol. 100,iss. 18 (2019), s.184503-
DOI:
Digital Object Identifier (open in new tab) 10.1103/physrevb.100.184503
Bibliography: test
  1. A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature (London) 525, 73 (2015). open in new tab
  2. A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, Superconductivity at 250 K in lanthanum hydride under high pressures, Nature (London) 569, 528 (2019). open in new tab
  3. R. Szczȩśniak and A. P. Durajski, Superconductivity well above room temperature in compressed MgH 6 , Front. Phys. 11, 117406 (2016). open in new tab
  4. R. Szczȩśniak and A. P. Durajski, Unusual sulfur isotope effect and extremely high critical temperature in H 3 S superconductor, Sci. Rep. 8, 6037 (2018). open in new tab
  5. J. Guo, G. Lin, S. Cai, C. Xi, C. Zhang, W. Sun, Q. Wang, K. Yang, A. Li, Q. Wu, Y. Zhang, T. Xiang, R. J. Cava, and L. Sun, Record-high superconductivity in Niobium-Titanium alloy, Adv. Mater. 31, 1807240 (2019). open in new tab
  6. J. Guo, H. Wang, F. von Rohr, Z. Wang, S. Cai, Y. Zhou, K. Yang, A. Li, S. Jiang, Q. Wu, R. J. Cava, and L. Sun, Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa, Proc. Natl. Acad. Sci. USA 114, 13144 (2017). open in new tab
  7. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6, 299 (2004). open in new tab
  8. J. W. Yeh, Y. L. Chen, S. J. Lin, and S. K. Chen, High-entropy alloys-A new era of exploitation, in Advanced Structural Ma- terials III, Materials Science Forum, Vol. 560 (Trans Tech Publications, Switzerland, 2007), pp. 1. open in new tab
  9. P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, and J. Dolinšek, Discovery of a Superconducting High-Entropy Alloy, Phys. Rev. Lett. 113, 107001 (2014). open in new tab
  10. K. Jasiewicz, B. Wiendlocha, P. Korbeń, S. Kaprzyk, and J. Tobola, Superconductivity of Ta 34 Nb 33 Hf 8 Zr 14 Ti 11 high en- tropy alloy from first principles calculations, Phys. Status Solidi: Rapid Res. Lett. 10, 415 (2016). open in new tab
  11. R. Sogabe, Y. Goto, and Y. Mizuguchi, Superconductivity in REO 0.5 F 0.5 BiS 2 with high-entropy-alloy-type blocking layers, Appl. Phys. Express 11, 053102 (2018). open in new tab
  12. K. Stolze, J. Tao, F. O. von Rohr, T. Kong, and R. J. Cava, Sc-Zr-Nb-Rh-Pd and Sc-Zr-Nb-Ta-Rh-Pd high-entropy alloy superconductors on a CsCl-type lattice, Chem. Mater. 30, 906 (2018). open in new tab
  13. K. Stolze, F. A. Cevallos, T. Kong, and R. J. Cava, High-entropy alloy superconductors on an σ -Mn lattice, J. Mater. Chem. C 6, 10441 (2018). open in new tab
  14. F. O. von Rohr and R. J. Cava, Isoelectronic substitu- tions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high- entropy alloy superconductor, Phys. Rev. Mater. 2, 034801 (2018). open in new tab
  15. F. von Rohr, M. J. Winiarski, J. Tao, T. Klimczuk, and R. J. Cava, Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor, Proc. Natl. Acad. Sci. USA 113, E7144 (2016). open in new tab
  16. T. Stopa, S. Kaprzyk, and J. Tobola, Linear aspects of the Korringa-Kohn-Rostoker formalism, J. Phys.: Condens. Matter 16, 4921 (2004). open in new tab
  17. S. Kaprzyk and A. Bansil, Green's function and a generalized lloyd formula for the density of states in disordered muffin-tin alloys, Phys. Rev. B 42, 7358 (1990). open in new tab
  18. A. Bansil, S. Kaprzyk, P. E. Mijnarends, and J. Toboła, Elec- tronic structure and magnetism of Fe 3−x V x X (X = Si, Ga, and Al) alloys by the KKR-CPA method, Phys. Rev. B 60, 13396 (1999). open in new tab
  19. P. Soven, Coherent-potential model of substitutional disordered alloys, Phys. Rev. 156, 809 (1967). open in new tab
  20. G. D. Gaspari and B. L. Gyorffy, Electron-Phonon Interactions, d Resonances, and Superconductivity in Transition Metals, Phys. Rev. Lett. 28, 801 (1972). open in new tab
  21. J. P. Perdew and Y. Wang, Accurate and simple analytic repre- sentation of the electron-gas correlation energy, Phys. Rev. B 45, 13244 (1992). open in new tab
  22. K. Jasiewicz, J. Cieslak, S. Kaprzyk, and J. Tobola, Relative crystal stability of Al x FeNiCrCo high entropy alloys from XRD analysis and formation energy calculation, J. Alloys Compd. 648, 307 (2015). open in new tab
  23. K. Jin, B. C. Sales, G. M. Stocks, G. D. Samolyuk, M. Daene, W. J. Weber, Y. Zhang, and H. Bei, Tailoring the physical properties of ni-based single-phase equiatomic alloys by modifying the chemical complexity, Sci. Rep. 6, 20159 (2016). open in new tab
  24. M. Calvo-Dahlborg, J. Cornide, J. Tobola, D. Nguyen-Manh, J. S. Wróbel, J. Juraszek, S. Jouen, and U. Dahlborg, Interplay of electronic, structural and magnetic properties as the driving feature of high-entropy CoCrFeNiPd alloys, J. Phys. D: Appl. Phys. 50, 185002 (2017). open in new tab
  25. K. Jasiewicz, S. Kaprzyk, and J. Tobola, Interplay of Crys- tal Structure Preference and Magnetic Ordering in High Entropy CrCoFeNiAl Alloys, Acta Phys. Pol. A 133, 511 (2018). open in new tab
  26. I. R. Gomersall and B. L. Gyorffy, A simple theory of the electron-phonon mass enhancement in transition metal com- pounds, J. Phys. F: Met. Phys. 4, 1204 (1974). open in new tab
  27. B. M. Klein, L. L. Boyer, and D. A. Papaconstantopoulos, Superconducting Properties of A15 Compounds Derived from Band-Structure Results, Phys. Rev. Lett. 42, 530 (1979). open in new tab
  28. I. I. Mazin, S. N. Rashkeev, and S. Y. Savrasov, Nonspherical rigid-muffin-tin calculations of electron-phonon coupling in high-T c perovskites, Phys. Rev. B 42, 366 (1990). open in new tab
  29. B. Wiendlocha, J. Tobola, and S. Kaprzyk, Search for Sc 3 X B(X = In, Tl, Ga, Al) perovskites superconductors and proximity of weak ferromagnetism, Phys. Rev. B 73, 134522 (2006). open in new tab
  30. B. Wiendlocha, J. Tobola, M. Sternik, S. Kaprzyk, K. Parlinski, and A. M. Oleś, Superconductivity of Mo 3 Sb 7 from first princi- ples, Phys. Rev. B 78, 060507(R) (2008). open in new tab
  31. B. Wiendlocha and M. Sternik, Effect of the tetragonal dis- tortion on the electronic structure, phonons and superconduc- tivity in the Mo 3 Sb 7 superconductor, Intermetallics 53, 150 (2014). open in new tab
  32. W. L. McMillan, Transition temperature of strong-coupled su- perconductors, Phys. Rev. 167, 331 (1968). open in new tab
  33. J. J. Hopfield, Angular momentum and transition-metal super- conductivity, Phys. Rev. 186, 443 (1969). open in new tab
  34. See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.100.184503 for the discussion of the differ- ent definitions of the frequency moments, Figs. S1 and S2, for the phonon DOS plots of Nb and Ta under pressure, Fig. S3 for the XRD pattern at room temperature, and Fig. S4 for the plot of the matrix elements, which enter the formula for the McMillan-Hopfield parameters. open in new tab
  35. S. S. Rajput, R. Prasad, R. M. Singru, S. Kaprzyk, and A. Bansil, Electronic structure of disordered Nb -Mo alloys stud- ied using the charge-self-consistent Korringa -Kohn -Rostoker coherent potential approximation, J. Phys.: Condens. Matter 8, 2929 (1996). open in new tab
  36. D. A. Papaconstantopoulos, L. L. Boyer, B. M. Klein, A. R. Williams, V. L. Morruzzi, and J. F. Janak, Calculations of the superconducting properties of 32 metals with Z 49, Phys. Rev. B 15, 4221 (1977). open in new tab
  37. S. Massidda, J. Yu, and A. J. Freeman, Electronic structure and properties of superconducting LiTi 2 O 4 , Phys. Rev. B 38, 11352 (1988). open in new tab
  38. F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. 71, 809 (1947). open in new tab
  39. Z.-L. Liu, L.-C. Cai, X.-R. Chen, Q. Wu, and F.-Q. Jing, Ab initio refinement of the thermal equation of state for bcc tantalum: The effect of bonding on anharmonicity, J. Phys.: Condens. Matter 21, 095408 (2009). open in new tab
  40. G. Grimvall, Thermophysical Properties of Materials (North- Holland, Amsterdam, 1986). open in new tab
  41. R. Jeanloz, Shock wave equation of state and finite strain theory, J. Geophys. Res.: Solid Earth 94, 5873 (1989). open in new tab
  42. C. Nie, Volume and temperature dependence of the second Grüneisen parameter of NaCl, Phys. Status Solidi B 219, 241 (2000). open in new tab
  43. O. L. Anderson and D. G. Isaak, The dependence of the Anderson-Grüneisen parameter δ T upon compression at ex- treme conditions, J. Phys. Chem. Solids 54, 221 (1993). open in new tab
  44. O. L. Anderson, Equations of State for Solids in Geophysics and Ceramic Science (Oxford University Press, New York, 1995).
  45. O. L. Anderson, Derivation of Wachtman's equation for the temperature dependence of elastic moduli of oxide compounds, Phys. Rev. 144, 553 (1966). open in new tab
  46. J. S. Dugdale and D. K. C. MacDonald, The thermal expansion of solids, Phys. Rev. 89, 832 (1953). open in new tab
  47. Y. A. Chang, On the temperature dependence of the bulk modulus and the Anderson-Grüneisen parameter δ of oxide compounds, J. Phys. Chem. Solids 28, 697 (1967). open in new tab
  48. Y. Kimura, T. Ohtsuka, T. Matsui, and T. Mizusaki, The normal state specific heat of niobium-tantalum alloys, Phys. Lett. A 29, 284 (1969). open in new tab
  49. A. F. Guillermet and G. Grimvall, Homology of interatomic forces and debye temperatures in transition metals, Phys. Rev. B 40, 1521 (1989). open in new tab
  50. I. S. Grigoriev and E. Z. Meilikhov, Handbook of Physical Quantities (CRC Press, New York, 1997).
  51. K. W. Katahara, M. H. Manghnani, and E. S. Fisher, Pressure derivatives of the elastic moduli of BCC Ti-V-Cr, Nb-Mo and Ta-W alloys, J. Phys. F: Met. Phys. 9, 773 (1979). open in new tab
  52. K. A. Jr Gschneidner, Solid State Physics (Academic, New York, 1964). open in new tab
  53. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos et al., QUANTUM ESPRESSO: A modular and open-source software project for quantum simula- tions of materials, J. Phys.: Condens. Matter 21, 395502 (2009). open in new tab
  54. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de open in new tab
  55. Gironcoli, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo et al., Advanced capabilities for materials modeling with QUANTUM ESPRESSO, J. Phys.: Condens. Matter 29, 465901 (2017). open in new tab
  56. A. D. Corso, Pseudopotentials periodic table: From H to Pu, Comput. Mater. Sci. 95, 337 (2014). open in new tab
  57. The following pseudopotentials were used: Ta.pbe-spfn-kjpaw_ psl.1.0.0.UPF and Nb.pbe-spn-kjpaw_psl.1.0.0.UPF, http:// www.quantum-espresso.org/pseudopotentials/ open in new tab
  58. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996). open in new tab
  59. G. Grimvall, The Electron-phonon Interaction in Metals (North- Holland, Amsterdam, 1981).
  60. X. Li, First-principles study of the third-order elastic constants and related anharmonic properties in refractory high-entropy alloys, Acta Mater. 142, 29 (2018). open in new tab
  61. A. S. Ahmad, Y. Su, S. Y. Liu, K. Ståhl, Y. D. Wu, X. D. Hui, U. Ruett, O. Gutowski, K. Glazyrin, H. P. Liermann, H. Franz, H. Wang, X. D. Wang, Q. P. Cao, D. X. Zhang, and J. Z. Jiang, Structural stability of high entropy alloys under pressure and temperature, J. Appl. Phys. 121, 235901 (2017). open in new tab
  62. A. Bansil, Coherent-potential and average t-matrix approxima- tions for disordered muffin-tin alloys. II. Application to realistic systems, Phys. Rev. B 20, 4035 (1979). open in new tab
  63. W. H. Butler, Theory of electronic transport in random al- loys: Korringa-Kohn-Rostoker coherent-potential approxima- tion, Phys. Rev. B 31, 3260 (1985). open in new tab
  64. B. Wiendlocha, K. Kutorasinski, S. Kaprzyk, and J. Tobola, Recent progress in calculations of electronic and transport properties of disordered thermoelectric materials, Scr. Mater. 111, 33 (2016). open in new tab
  65. I. M. Lifshitz, Anomalies of electron characteristics of a metal in the high pressure region, ZhETF, 38, 1569, (1960) [J. Exp. Theor. Phys. 11, 1130 (1960)].
  66. J. S. Tse, Z. Li, K. Uehara, Y. Ma, and R. Ahuja, Electron- phonon coupling in high-pressure Nb, Phys. Rev. B 69, 132101 (2004). open in new tab
  67. V. V. Struzhkin, Y. A. Timofeev, R. J. Hemley, and H.-K. Mao, Superconducting T c and Electron-Phonon Coupling in Nb to 132 GPa: Magnetic Susceptibility at Megabar Pressures, Phys. Rev. Lett. 79, 4262 (1997). open in new tab
  68. S. A. Ostanin, V. Yu. Trubitsin, S. Yu. Savrasov, M. Alouani, and H. Dreyssé, Calculated Nb superconducting transition tem- perature under hydrostatic pressure, High Press. Res. 17, 393 (2000). open in new tab
  69. V. K. Ratti, R. Evans, and B. L. Gyorffy, The volume de- pendence of the electron-phonon mass enhancement and the pressure dependence of tc in transition metals, J. Phys. F: Met. Phys. 4, 371 (1974). open in new tab
  70. B. Wiendlocha, M. J. Winiarski, M. Muras, C. Zvoriste-Walters, J.-C. Griveau, S. Heathman, M. Gazda, and T. Klimczuk, Pres- sure effects on the superconductivity of the HfPd 2 Al Heusler compound: Experimental and theoretical study, Phys. Rev. B 91, 024509 (2015). open in new tab
  71. S. Y. Savrasov and D. Y. Savrasov, Electron-phonon interactions and related physical properties of metals from linear-response theory, Phys. Rev. B 54, 16487 (1996). open in new tab
  72. J. P. Carbotte, Properties of boson-exchange superconductors, Rev. Mod. Phys. 62, 1027 (1990). open in new tab
  73. R. Szczȩśniak, A. P. Durajski, and ŁHerok, Thermodynamic properties of antiperovskite MgCNi 3 in superconducting phase, Solid State Commun. 203, 63 (2015). open in new tab
  74. J. W. Garland and K. H. Bennemann, Theory for the pressure dependence of Tc for narrow-band superconductors, AIP Conf. Proc. 4, 255 (1972). open in new tab
Verified by:
Gdańsk University of Technology

seen 92 times

Recommended for you

Meta Tags