Pressure in charge. Neglected parameter in hydrothermal synthesis turns out to be crucial for electrochemical properties of ammonium vanadates - Publication - Bridge of Knowledge

Search

Pressure in charge. Neglected parameter in hydrothermal synthesis turns out to be crucial for electrochemical properties of ammonium vanadates

Abstract

Ammonium vanadates are of great interest as they exhibit unusual electrical and sensory properties.(NH4)2V6O16and (NH4)2V10O25$8H2O with various morphology were obtained in the hydrothermalsynthesis under controlled temperature and pressure. It was shown, that the pure (NH4)2V10O25$8H2Owas obtained under 50 bar of initial pressure, whereas lower pressure lead to the mixture of twocompounds. The influence of the pressure was studied for thefirst time, and the results demonstrated itsutmost importance. Moreover, the electrochemical performance of synthesized (NH4)2V10O25$8H2Owasstudied, revealing its excellent behavior as cathode material for Li-ion batteries. To the best of our knowledge, there is no information available on using this structure in such application.

Citations

  • 6

    CrossRef

  • 0

    Web of Science

  • 6

    Scopus

Cite as

Full text

download paper
downloaded 39 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
ELECTROCHIMICA ACTA no. 339,
ISSN: 0013-4686
Language:
English
Publication year:
2020
Bibliographic description:
Prześniak-Welenc M., Nadolska M., Nowak A., Sadowska K.: Pressure in charge. Neglected parameter in hydrothermal synthesis turns out to be crucial for electrochemical properties of ammonium vanadates// ELECTROCHIMICA ACTA -Vol. 339, (2020), s.13591-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.electacta.2020.135919
Bibliography: test
  1. G.S. Zakharova, I. V. Baklanova, A.Y. Suntsov, Y. Liu, Q. Zhu, W. Chen, NH 4 V 3 O 7 : Synthesis, morphology, and optical properties, Russ. J. Inorg. Chem. 61 (2016) 1584-1590. open in new tab
  2. https://doi.org/10.1134/S0036023616120214. open in new tab
  3. G.Q. Zhang, S.T. Zhang, Charge-discharge mechanisms of ammonium vanadium bronze NH 4 V 4 O 10 nanobelts as cathode for lithium-ion battery, Asia-Pacific Power Energy Eng. Conf. open in new tab
  4. APPEEC. 5 (2009) 2-5. https://doi.org/10.1109/APPEEC.2009.4918215. open in new tab
  5. H. Wang, K. Huang, S. Liu, C. Huang, W. Wang, Y. Ren, Electrochemical property of NH 4 V 3 O 8 ·0.2H 2 O flakes prepared by surfactant assisted hydrothermal method, J. Power Sources. 196 (2011) 788-792. https://doi.org/10.1016/j.jpowsour.2010.07.022. open in new tab
  6. H. Fei, X. Wu, H. Li, M. Wei, Novel sodium intercalated (NH 4 ) 2 V 6 O 16 platelets: High performance cathode materials for lithium-ion battery, J. Colloid Interface Sci. 415 (2014) 85- open in new tab
  7. https://doi.org/10.1016/j.jcis.2013.10.025. open in new tab
  8. M.A. Teplonogova, A.D. Yapryntsev, A.E. Baranchikov, V.K. Ivanov, Selective hydrothermal synthesis of ammonium vanadates(V) and (IV,V), Transit. Met. Chem. (2018) 2-7. open in new tab
  9. https://doi.org/10.1007/s11243-018-0265-x. open in new tab
  10. N. Wang, W. Chen, L. Mai, Y. Dai, Selected-control hydrothermal synthesis and formation mechanism of 1D ammonium vanadate, J. Solid State Chem. 181 (2008) 652-657. open in new tab
  11. https://doi.org/10.1016/j.jssc.2007.12.036. open in new tab
  12. H.K. Park, G. Kim, Ammonium hexavanadate nanorods prepared by homogeneous precipitation using urea as cathodes for lithium batteries, Solid State Ionics. 181 (2010) 311-314. open in new tab
  13. https://doi.org/10.1016/j.ssi.2010.01.011. open in new tab
  14. Y. Jiang, L. Jiang, Z. Wu, P. Yang, H. Zhang, Z. Pan, et al., In situ growth of (NH 4 ) 2 V 10 O 25 ·8H 2 O urchin-like hierarchical arrays as superior electrodes for all-solid-state supercapacitors, J. Mater. Chem. A. 6 (2018) 16308-16315. https://doi.org/10.1039/c8ta05706k. open in new tab
  15. T.Z. Ren, Z.Y. Yuan, X. Zou, Crystal growth of mixed-valence ammonium vanadates, Cryst. Res. Technol. 42 (2007) 317-320. https://doi.org/10.1002/crat.200610821. open in new tab
  16. Y. Cheng, J. Huang, J. Li, L. Cao, Z. Xu, J. Wu, et al., Structure-controlled synthesis and electrochemical properties of NH 4 V 3 O 8 as cathode material for Lithium ion batteries, Electrochim. Acta. 212 (2016) 217-224. https://doi.org/10.1016/j.electacta.2016.07.008. open in new tab
  17. D. Fang, Y. Cao, R. Liu, W. Xu, S. Liu, Z. Luo, et al., Novel hierarchical three-dimensional ammonium vanadate nanowires electrodes for lithium ion battery, Appl. Surf. Sci. 360 (2016) 658-665. https://doi.org/10.1016/j.apsusc.2015.11.038. open in new tab
  18. Y. Ma, S. Ji, H. Zhou, S. Zhang, R. Li, J. Zhu, et al., Synthesis of novel ammonium vanadium bronze (NH 4 ) 0.6 V 2 O 5 and its application in Li-ion battery, RSC Adv. 5 (2015) 90888- 90894. https://doi.org/10.1039/c5ra18074k. open in new tab
  19. H. Wang, Y. Ren, W. Wang, X. Huang, K. Huang, Y. Wang, et al., NH 4 V 3 O 8 nanorod as a high performance cathode material for rechargeable Li-ion batteries, J. Power Sources. 199 (2012) 315-321. https://doi.org/10.1016/j.jpowsour.2011.10.069. open in new tab
  20. H. Wang, K. Huang, C. Huang, S. Liu, Y. Ren, X. Huang, (NH 4 ) 0.5 V 2 O 5 nanobelt with good cycling stability as cathode material for Li-ion battery, J. Power Sources. 196 (2011) 5645-5650. open in new tab
  21. https://doi.org/10.1016/j.jpowsour.2011.02.046. open in new tab
  22. S.G. Leonardi, P. Primerano, N. Donato, G. Neri, Behavior of sheet-like crystalline ammonium trivanadate hemihydrate (NH 4 V 3 O 8 ×0.5H 2 O) as a novel ammonia sensing material, J. Solid State Chem. 202 (2013) 105-110. https://doi.org/10.1016/j.jssc.2013.03.028. open in new tab
  23. E.A. Esparcia, M.S. Chae, J.D. Ocon, S.T. Hong, Ammonium Vanadium Bronze (NH 4 V 4 O 10 ) as a High-Capacity Cathode Material for Nonaqueous Magnesium-Ion Batteries, Chem. Mater. 30 (2018) 3690-3696. https://doi.org/10.1021/acs.chemmater.8b00462. open in new tab
  24. T.N. Vo, H. Kim, J. Hur, W. Choi, I.T. Kim, Surfactant-assisted ammonium vanadium oxide as a superior cathode for calcium-ion batteries, J. Mater. Chem. A. 6 (2018) 22645-22654. https://doi.org/10.1039/C8TA07831A. open in new tab
  25. C. Wang, T. Wei, Q. Li, G. Yang, Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH 4 ) 2 V 10 O 25 *8H 2 O nanobelts, J. Mater. Chem. A. (2018).
  26. https://doi.org/10.1039/C8TA06626D. open in new tab
  27. S.H. Lee, J.M. Koo, S.G. Oh, S.S. Im, Facile synthesis of ammonium vanadate nanofibers by using reflux in aqueous V 2 O 5 solution with ammonium persulfate, Mater. Chem. Phys. 194 (2017) 313-321. https://doi.org/10.1016/j.matchemphys.2017.03.053. open in new tab
  28. A. Ottmann, G.S. Zakharova, B. Ehrstein, R. Klingeler, Electrochemical performance of single crystal belt-like NH 4 V 3 O 8 as cathode material for lithium-ion batteries, Electrochim. Acta. 174 (2015) 682-687. https://doi.org/10.1016/j.electacta.2015.06.027. open in new tab
  29. K.J. Range, C. Eglmeier, A.M. Heyns, D. Waal, Ammonium Hexavanadate, (NH 4 ) 2 V 6 O 16 : Preparation, Crystal Structure, Infrared Spectra and High-Pressure Reactions, Zeitschrift fur Naturforsch. -Sect. B J. Chem. Sci. 45 (1990) 31-38. https://doi.org/10.1515/znb-1990-0108. open in new tab
  30. D. Vernardou, M. Apostolopoulou, D. Louloudakis, N. Katsarakis, E. Koudoumas, Hydrothermal growth and characterization of shape-controlled NH 4 V 3 O 8 , New J. Chem. 38 (2014) 2098-2104. https://doi.org/10.1039/c3nj01446k. open in new tab
  31. H.K. Park, G. Kim, Ammonium hexavanadate nanorods prepared by homogeneous precipitation using urea as cathodes for lithium batteries, Solid State Ionics. 181 (2010) 311-314. open in new tab
  32. https://doi.org/10.1016/j.ssi.2010.01.011. open in new tab
  33. L. Kou, L. Cao, J. Huang, J. Yang, Y. Wang, Facile synthesis of NH 4 V 3 O 8 nanoflowers as advanced cathodes for high performance of lithium ion battery, J. Mater. Sci. Mater. Electron. 29 (2018) 4830-4834. https://doi.org/10.1007/s10854-017-8438-5. open in new tab
  34. T.N. Vo, H. Kim, J. Hur, W. Choi, I.T. Kim, Surfactant-assisted ammonium vanadium oxide as a superior cathode for calcium-ion batteries, J. Mater. Chem. A. 6 (2018) 22645-22654. https://doi.org/10.1039/C8TA07831A. open in new tab
  35. Y. Liu, M. Xu, B. Shen, Z. Xia, Y. Li, Y. Wu, et al., Facile synthesis of mesoporous NH 4 V 4 O 10 nanoflowers with high performance as cathode material for lithium battery, J. Mater. open in new tab
  36. Sci. 53 (2018) 2045-2053. https://doi.org/10.1007/s10853-017-1619-z. open in new tab
  37. G.S. Zakharova, C. Täschner, T. Kolb, C. Jähne, A. Leonhardt, B. Büchner, Morphology controlled NH 4 V 3 O 8 microcrystals by hydrothermal synthesis, Dalt. Trans. 42 (2013) 4897. https://doi.org/10.1039/c3dt32550d. open in new tab
  38. S. Sarkar, P.S. Veluri, S. Mitra, Morphology controlled synthesis of layered NH 4 V 4 O 10 and the impact of binder on stable high rate electrochemical performance, Electrochim. Acta. 132 (2014) 448-456. https://doi.org/10.1016/j.electacta.2014.03.144. open in new tab
  39. X. Tian, X. Xu, L. He, Q. Wei, M. Yan, L. Xu, et al., Ultrathin pre-lithiated V 6 O 13 nanosheet cathodes with enhanced electrical transport and cyclability, J. Power Sources. 255 (2014) 235-241. https://doi.org/10.1016/j.jpowsour.2014.01.017. open in new tab
  40. K.F. Zhang, G.Q. Zhang, X. Liu, Z.X. Su, H.L. Li, Large scale hydrothermal synthesis and electrochemistry of ammonium vanadium bronze nanobelts, J. Power Sources. 157 (2006) 528- 532. https://doi.org/10.1016/j.jpowsour.2005.07.043. open in new tab
  41. G.S. Zakharova, A.P. Tyutyunnik, Q. Zhu, Y. Liu, W. Chen, Hydrothermal synthesis and thermal stability of self-assembling NH 4 V 3 O 7 microcrystals, Russ. J. Inorg. Chem. 60 (2015) 653-657. https://doi.org/10.1134/S0036023615060194. open in new tab
  42. L. Liu, Q. Liu, W. Zhao, L. Wang, G. Li, L. Chen, Facile synthesis of NH 4 V 3 O 8
  43. micro/nanoplates and the effects of cutoff potential on electrochemical performance, Int. J. Electrochem. Sci. 12 (2017) 11754-11762. https://doi.org/10.20964/2017.12.19. open in new tab
  44. Y. Liu, B. Shen, X. Liu, Y. Wu, X. He, Q. Li, High-yield and eco-friendly fabrication of ultra-long (NH 4 ) 2 V 6 O 16 ·1.5H 2 O nanowires and their electrochemistry performances, Int. J. Electrochem. Sci. 12 (2017) 5483-5491. https://doi.org/10.20964/2017.06.31. open in new tab
  45. H.A. Abbood, H. Peng, X. Gao, B. Tan, K. Huang, Fabrication of cross-like NH 4 V 4 O 10 open in new tab
  46. nanobelt array controlled by CMC as soft template and photocatalytic activity of its calcinated product, Chem. Eng. J. 209 (2012) 245-254. https://doi.org/10.1016/j.cej.2012.08.027. open in new tab
  47. S.G. Leonardi, P. Primerano, N. Donato, G. Neri, Behavior of sheet-like crystalline ammonium trivanadate hemihydrate (NH 4 V 3 O 8 ×0.5H 2 O) as a novel ammonia sensing material, J. Solid State Chem. 202 (2013) 105-110. https://doi.org/10.1016/j.jssc.2013.03.028. open in new tab
  48. P.Y. Zavalij, M.S. Whittingham, Structural chemistry of vanadium oxides with open frameworks, Acta Crystallogr. B. 55 (1999) 627-663. open in new tab
  49. https://doi.org/10.1107/S0108768199004000. open in new tab
  50. S. Taminato, M. Hirayama, K. Suzuki, K. Kim, Y. Zheng, K. Tamura, Mechanistic studies on lithium intercalation in a lithium-rich layered material using Li 2 RuO 3 epitaxial film electrodes and in situ surface X-ray analysis, J. Mater. Chem. A. 2 (2014) 17875-17882. open in new tab
  51. https://doi.org/10.1039/c4ta02795g. open in new tab
  52. K. Ghatak, S. Basu, T. Das, V. Sharma, H. Kumar, D. Datta, Effect of cobalt content on the electrochemical properties and structural stability of NCA type cathode materials, Phys. Chem. open in new tab
  53. Chem. Phys. 20 (2018) 22805-22817. https://doi.org/10.1039/c8cp03237h. open in new tab
  54. C. Wang, H. Liu, M. Jiang, Y. Wang, R. Liu, Z. Luo, Applied Surface Science Ammonium vanadate@polypyrrole@manganese dioxide nanowire arrays with enhanced reversible lithium storage, Appl. Surf. Sci. 416 (2017) 402-410. https://doi.org/10.1016/j.apsusc.2017.04.069 open in new tab
  55. H.Y. Xu, H. Wang, Z.Q. Song, Y.W. Wang, H. Yan, M. Yoshimura, Novel chemical open in new tab
  56. Electrochim. Acta 49 (2004) 349-353. doi:10.1016/j.electacta.2003.08.017. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 146 times

Recommended for you

Meta Tags