Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development-A Review - Publication - Bridge of Knowledge

Search

Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development-A Review

Abstract

Pyrolysis has been applied in the human economy for many years, and it has become a significant alternative to the production of chemical compounds, including biofuels. The article fo-cuses mostly on recent achievements in the technical and processing aspects of pyrolysis. The aim of the review is to present the latest research on the process of waste biomass pyrolysis to fuel production. The paper describes the mechanisms of the pyrolysis process, composition, and properties of the obtained fractions, namely pyrolysis gas, bio-oil, and biochar. Additionally, the technical aspects of the pyrolysis process are mentioned, with particular attention to the construction of the reactors. The process of waste biomass pyrolysis allows for obtaining many chemical compounds (second-generation biofuels). Optimization of the pyrolysis process allows obtaining the desired products that are applied in the chemical industry, energy, and transport. The application of pyrolysis gas, oil, and biochar as valuable chemical compounds are related to the intensifying effects of climate change, biofuel production, and waste management in accordance with the principles of sustainable development. In recent years, there has been large-scale research into the use of renewable energy sources through pyrolysis. This will make it possible to significantly reduce the carbon footprint and produce second-generation biofuels in a sustainable manner. Current research into the mechanisms of pyrolysis processes is promising, and will therefore provide access to clean and low-cost compounds that will have broad applications in the energy, chemical, agricultural, and transportation industries.

Citations

Author (1)

Cite as

Full text

download paper
downloaded 19 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Magazine publication
Type:
Magazine publication
Publication year:
2023
DOI:
Digital Object Identifier (open in new tab) https://doi.org/10.3390/en16041829
Bibliography: test
  1. Igliński, B.; Iglińska, A.; Kujawski, W.; Buczkowski, R.; Cichosz, M. Bioenergy in Poland. Renew. Sustain. Energy Rev. 2012, 15, 2999-3007. [CrossRef] open in new tab
  2. Igliński, B.; Kiełkowska, U.; Piechota, G.; Skrzatek, M.; Cichosz, M.; Iwański, P. Can energy self-sufficiency be achieved? Case study of Warmińsko-Mazurskie Voivodeship (Poland). Clean Technol. Env. Policy 2021, 23, 2061-2081. [CrossRef] open in new tab
  3. Baudry, G.; Macharis, C.; Vallée, T. Can microalgae biodiesel contribute to achieve the sustainability objectives in the transport sector in France by 2030? A comparison between first, second and third generation biofuels through a range-based Multi-Actor. Multi-Criteria Anal. Energy 2018, 155, 1032-1046. [CrossRef] open in new tab
  4. Kaczor, Z.; Buliński, Z.; Werle, S. Modelling approaches to waste biomass pyrolysis: A review. Renew. Energy 2020, 159, 427-443. [CrossRef] open in new tab
  5. Velmurugan, V. Review of research and development on pyrolysis process. Mater. Today Proc. 2022, 49, 3679-3686. [CrossRef] open in new tab
  6. Liu, R.; Liu, G.; Yousaf, B.; Niu, Z.; Abbas, Q. Novel investigation of pyrolysis mechanism and kinetics for functional groups in biomass matrix. Renew. Sustain. Energy Rev. 2022, 153, 111761. [CrossRef] open in new tab
  7. Zhang, Y.; Cui, Y.; Liu, S.; Fan, L.; Zhou, N.; Peng, P.; Wang, Y.; Guo, F.; Cheng, Y.; Liu, Y.; et al. Fast microwave-assisted pyrolysis of wastes for biofuels production-A review. Bioresour. Technol. 2020, 297, 122480. [CrossRef] open in new tab
  8. Du, Y.; Ju, T.; Meng, Y.; Lan, T.; Han, S.; Jiang, J. A review on municipal solid waste pyrolysis of different composition for gas production. Fuel Process. Technol. 2021, 224, 107026. [CrossRef] open in new tab
  9. Haghighat, M.; Majidian, N.; Hallajisani, A.; Samipourgiri, M. Production of bio-oil from sewage sludge: A review on the thermal and catalytic conversion by pyrolysis. Sustain. Energy Technol. Assess. 2020, 42, 100870. [CrossRef] Energies 2023, 16, 1829 22 of 26 open in new tab
  10. Fakayode, O.A.; Aboagarib, E.A.A.; Zhou, C.; Ma, H. Co-pyrolysis of lignocellulostic and macroalgae biomasses for the production of biochar-A review. Bioresour. Technol. 2020, 297, 122408. [CrossRef] open in new tab
  11. Hu, X.; Gholizaed, M. Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. J. Energy Chem. 2019, 39, 109-143. [CrossRef] open in new tab
  12. Wang, G.; Dai, Y.; Yang, H.; Xiong, Q.; Wang, K.; Zhou, J.; Li, Y.; Wang, S. A review of recent advances in biomass pyrolysis. Energy Fuels 2020, 34, 15557-15578. [CrossRef] open in new tab
  13. Stelmach, S. Waste Pyrolysis as an Element of the Circular Economy; Wydawnictwo PolitechnikiŚląskiej: Gliwice, Poland, 2019.
  14. Gonnella, G.; Ischia, G.; Fambri, L.; Fiori, L. Thermal analysis and kinetic modeling of pyrolysis and oxidation of hydrochars. Energies 2022, 15, 950. [CrossRef] open in new tab
  15. Hu, M.; Ye, Q.; Xue, Q.; Li, Z.; Wang, J.; Pan, Z. Towards understanding the chemical reactions between KOH and oxygen- containing groups during KOH-catalyzed pyrolysis of biomass. Energy 2022, 245, 123286. [CrossRef] open in new tab
  16. Liu, Y.; Li, K.; Guo, J.; Xu, Z. Impact of the operating conditions on the derived products and the reaction mechanism in vacuum pyrolysis treatment of the organic material in waste integrated circuits. J. Clean. Prod. 2018, 197, 1488-1497. [CrossRef] open in new tab
  17. Siddiqul, M.N.; Redhwi, H.H.; Antonakou, E.V.; Achilias, D.S. Pyrolysis mechanism and thermal degradation kinetics of poly(bisphenol A carbonate)-based polymers originating in waste electric and electronic equipment. J. Anal. Appl. Pyrolysis 2018, 132, 123-133. [CrossRef] open in new tab
  18. Kan, T.; Strezov, V.; Evans, T.; He, J.; Kumar, R.; Lu, Q. Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure. Renew. Sustain. Energy Rev. 2020, 134, 110305. [CrossRef] open in new tab
  19. Stančić, H.; Manić, N.; Stojiljiković, D.; Vujanović, M.; Wang, X.; Duić, N. Thermogravimetric and kinetic analysis of biomass and polyurethane foam mixtures co-pyrolysis. Energy 2021, 237, 121592. [CrossRef] open in new tab
  20. Lv, P.; Bai, Y.; Wang, J.; Song, X.; Su, W.; Yu, G.; Ma, Y. Investigation into interaction of biomass waste with industrial solid waste during co-pyrolysis and the synergetic effect of its char gasification. Biomass Bioenergy 2022, 159, 106414. [CrossRef] open in new tab
  21. Zou, J.; Hu, H.; Xue, Y.; Li, C.; Li, Y.; Yellezuome, D.; He, F.; Zhang, X.; Rahman, M.M.; Cai, J. Exploring kinetic mechanisms of biomass pyrolysis using a generalized logistic mixture model. Energy Convers. Manag. 2022, 258, 115522. [CrossRef] open in new tab
  22. Phuakpunk, K.; Chalermsininsuwan, B.; Assabumrungrat, S. Pyrolysis kinetic parameters investigation of single and tri- component biomass: Models fitting via comparative model-free methods. Renew. Energy 2022, 182, 494-507. [CrossRef] open in new tab
  23. Gouws, S.M.; Carrier, M.; Bunt, J.R.; Neomagus, H.W.J.P. Lumped chemical kinetic modeling of raw torrefied biomass under pressurized pyrolysis. Energy Convers. Manag. 2022, 253, 115199. [CrossRef] open in new tab
  24. Wang, S.; Dai, G.; Yang, H.; Luo, Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progess Energy Combust. Sci. 2017, 62, 33-86. [CrossRef] open in new tab
  25. Zhang, L.; Tan, Y.; Cai, D.; Sun, J.; Zhang, Y.; Li, L.; Zhang, Q.; Zou, G.; Song, Z.; Bai, Y. Enhanced pyrolysis of woody biomass under the interaction of microwave and needle-shaped metal and its production properties. Energy 2022, 249, 123667. [CrossRef] open in new tab
  26. Elkhalifa, S.; Mariyam, S.; Mackey, H.R.; Al-Ansari, T.; McKay, G.; Parthasarathy, P. Pyrolysis valorization of vegetable wastes: Thermal, kinetic, thermodynamics, and pyrogas analyses. Energies 2022, 15, 6277. [CrossRef] open in new tab
  27. Ansari, B.; Kamal, B.; Beg, S.; Khan, M.A.W.; Khan, M.S.; Al Mesfer, M.K.; Danish, M. Recent development in investigating reaction chemistry and transport effects in biomass fast pyrolysis: A review. Renew. Sustain. Energy Rev. 2021, 150, 111454. [CrossRef] open in new tab
  28. Murakami, M.; Murakami, M. Cleavage of Carbon-Carbon Single Bonds by Transition Metals; Wiley-VCH GmbH & Co., KGaA: Weinheim, Germay, 2015. [CrossRef] open in new tab
  29. Lutz, M.D.R.; Morandi, B. Metal-catalysed carbon-carbon bond cleavage of unstrained alcohols. Chemical Reviews 2021, 1, 300-326. [CrossRef] [PubMed] open in new tab
  30. Liu, Z.; Li, P.; Chang, C.; Wang, X.; Song, J.; Fang, S.; Pang, S. Influence of metal chloride modified biochar on products characteristics from catalytic pyrolysis. Energy 2022, 250, 123776. [CrossRef] open in new tab
  31. Igliński, B.; Buczkowski, R.; Cichosz, M. Bioenergetics Technologies; Nicolaus Copernicus University: Toruń, Polan, 2009. open in new tab
  32. Roy, P.; Dias, G. Prospects for pyrolysis technologies in the bioenergy sector: A review. Renew. Sustain. Energy Rev. 2017, 77, 59-69. [CrossRef] open in new tab
  33. Homagain, K.; Shahi, C.; Luckai, N.; Sharma, M. Biochar-based bioenergy and its environmental impact in Northwestern Ontario Canada: A review. J. For. Res. 2014, 25, 737-748. [CrossRef] open in new tab
  34. Hornung, A. Transformation of Biomass: Theory to Practice; John Wiley&Sons: Hoboken, NJ, USA, 2014. open in new tab
  35. Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohdan, D. Biochar as a sorbent for contamined management in soil and water: A review. Chemosphere 2014, 99, 19-33. [CrossRef] [PubMed] open in new tab
  36. Chintala, V. Production, up-gradation and utilization of solar-assisted pyrolysis fuels from biomass-A technical review. Renew. Sustain. Energy Rev. 2018, 90, 120-130. [CrossRef] open in new tab
  37. Zhao, B.; Schmidt, S.; Qin, W.; Li, J.; Li, G.; Zhang, W. Towards the circular economy-A global meta-analysis of composting technologies reveals much potential for mitigating nitrogen losses. Sci. Total Environ. 2020, 704, 135401. [CrossRef] open in new tab
  38. Retajczyk, M.; Wróblewska, A. Pyrolysis of biomass as a source of energy. Wiad. Chem. 2018, 72, 127-146. open in new tab
  39. Zaman, C.Z.; Pal, K.; Yehye, W.A.; Sagadevan, S.; Shah, S.T.; Adebisi, G.A.; Mariana, E.; Rafique, R.F.; Johan, R.B. Pyrolysis: A sustainable way to generate energy from waste. In Pyrolysis; IntechOpen: London, UK, 2017; ISBN 978-953-51-3312-4. [CrossRef] Energies 2023, 16, 1829 23 of 26 open in new tab
  40. Zhang, H.; Xiao, R.; Wang, D.; He, G.; Shao, S.; Zhang, J.; Zhong, Z. Biomass fast pyrolysis in a fluidized bed reactor under N 2 , CO 2 , CH 4 and H 2 atmospheres. Bioresour. Technol. 2021, 102, 4258-4264. [CrossRef] open in new tab
  41. Bieniek, A.; Jerzak, W.; Sieradzka, M.; Mika, Ł.; Sztekler, K.; Magdziarz, A. Intermediate pyrolysis of brewer's spent grain: Impact of gas atmosphere. Energies 2022, 15, 2491. [CrossRef] open in new tab
  42. Niesler, M.; Stecko, J.; Stelmach, S. The use of softwood char as a substitute fuel in the iron ore sintering process. J. Met. Mater. 2020, 2, 2-14. open in new tab
  43. Li, A.; Han, H.; Hu, S.; Zhu, M.; Ren, Q.; Wang, Y.; Xu, J.; Jiang, L.; Su, A.; Xiang, J. A novel sludge pyrolysis and biomass gasification integrated method to enhance hydrogen-rich gas generation. Energy Convers. Manag. 2022, 254, 115205. [CrossRef] open in new tab
  44. Mariyam, S.; Shahbaz, M.; Al-Ansari, T.; Mackey, H.R. A critical review on co-gasification and co-pyrolysis for gas production. Renew. Sustain. Energy Rev. 2022, 161, 112349. [CrossRef] open in new tab
  45. Zhang, L.; Zhang, S.; Hu, X.; Gholizadeh, M. Progress in the application of the pyrolytic lignin from pyrolysis of biomass. Chem. Eng. J. 2021, 419, 129560. [CrossRef] open in new tab
  46. Terry, L.M.; Li, C.; Chew, J.J.; Aqsha, A.; How, B.S.; Loy, A.C.M.; Chin, B.L.F.; Khaerudini, D.S.; Hameed, N.; Guan, G.; et al. Bio-oil production from pyrolysis of oil palm biomass and the upgrading technologies: A review. Carbon Resour. Convers. 2021, 4, 239-250. [CrossRef] open in new tab
  47. Wang, C.; Wang, R.; Chen, T.; Zhu, X. Visual experimental study on the effect of heat exchange area on the evaluation of biomass pyrolysis vapors in a vertical indirect condensing field. Bioresour. Technol. 2022, 348, 126686. [CrossRef] open in new tab
  48. Qiu, B.; Tao, X.; Wang, J.; Liu, Y.; Li, S.; Chu, H. Research progress in the preparation of high-quality liquid fuels and chemicals by catalytic pyrolysis of biomass: A review. Energy Convers. Manag. 2022, 261, 115647. [CrossRef] open in new tab
  49. Zhou, S.; Xue, Y.; Cai, J.; Cui, C.; Ni, Z.; Zhou, Z. An understanding for improved biomass pyrolysis: Towards a systematic comparison of different acid pretreatments. Chem. Eng. J. 2021, 411, 128513. [CrossRef] open in new tab
  50. Nisar, J.; Ahmad, A.; Ali, G.; Rehman, N.U.; Shah, A.; Shah, I. Enhanced bio-oil yield from thermal decomposition of peanut shells using termite hill as the catalyst. Energies 2022, 15, 1891. [CrossRef] open in new tab
  51. Shen, Y.; Zhang, N.; Zhang, S. Catalytic pyrolysis of biomass with potassium compounds for co-production of high-quality biofuels and porous carbons. Energy 2020, 190, 116431. [CrossRef] open in new tab
  52. Fan, Y.; Zhao, W.; Shao, S.; Cai, Y.; Chen, Y.; Jin, L. Promotion of the vapors from biomass vacuum pyrolysis for biofuels under Non-thermal Plasma Synergistic Catyalysis (NPSC) system. Energy 2018, 142, 462-472. [CrossRef] open in new tab
  53. Kumar, R.S.; Sivakumar, S.; Joshuva, A.; Deenadayalan, G.; Vishnuvardhan, R. Bio-fuel production from Martynia annua L. seeds using slow pyrolysis reactor and its effects on diesel engine performance, combustion and emission characteristics. Energy 2021, 217, 119327. [CrossRef] open in new tab
  54. Armer, M.W.; Alhesan, J.S.A.; Ibrahim, S.; Qussay, G.; Marshall, M.; Al-Aye, O.S. Potential use of corn leaf waste for biofuel production in Jordan (physio-chemical study). Energy 2021, 214, 118863. [CrossRef] open in new tab
  55. Zanzi, R.; Sjöström, E. Rapid pyrolisis of agricultural residues at high temperature. Biomass Bioenergy 2022, 23, 357-366. [CrossRef] open in new tab
  56. Zhang, L.; Sun, X. Influence of bulking agents of physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Manag. 2016, 48, 115-126. [CrossRef] open in new tab
  57. Kim, T.; Oh, S.; Kim, J.; Choi, I.; Choi, J.W. Study on the hydrodeoxygenative upgrading of crude bio-oil produced from woody biomass by fast pyrolysis. Energy 2014, 68, 437-443. [CrossRef] open in new tab
  58. Wildschut, J.; Mahfud, F.H.; Venderbosch, R.H.; Heeres, H.J. Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind. Eng. Chem. Res. 2009, 48, 10324-10334. [CrossRef] open in new tab
  59. Yin, W.; Venderbosch, R.H.; He, S.; Bykova, M.V.; Khromova, S.A.; Yakovlev, V.A.; Heeres, H.J. Mono-, bi-, and tri-metallic Ni-based catalysts for the catalytic hydrotreatment of pyrolysis liquids. Biomass Convers. Biorafin. 2017, 7, 361-376. [CrossRef] open in new tab
  60. Boscagli, C.; Raffelt, K.; Grunwaldt, J. Reactivity of platform molecules in pyrolysis oil and in water during hydrotreatment over nickel and ruthenium catalysts. Biomass Bioenergy 2017, 106, 63-73. [CrossRef] open in new tab
  61. Capunitan, J.A.; Capareda, S.C. Hydrotreatment of corn stover bio-oil using noble metal catalysts. Fuel Process. Technol. 2014, 125, 190-199. [CrossRef] open in new tab
  62. Zheng, J.; Zhu, X.; Guo, Q.; Zhu, Q. Thermal conversion of rice husks and sawdust to liquid fuel. Waste Manag. 2006, 26, 1430-1435. [CrossRef] open in new tab
  63. Weerachanchai, P.; Tangsathitkulchai, C.; Tangsathitkulchai, M. Effect of reaction conditions on the catalytic esterification of bio-oil. Korean J. Chem. Eng. 2012, 29, 182-189. [CrossRef] open in new tab
  64. Cheng, D.; Wang, L.; Shahbazi, A.; Xiu, S.; Zhang, B. Catalytic cracking of crude bio-oil from glycerol-assisted liquefaction of swine manure. Energy Convers. Manag. 2014, 87, 378-384. [CrossRef] open in new tab
  65. Tian, Y.; Zuo, W.; Ren, Z.; Chen, D. Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety. Bioresour. Technol. 2011, 102, 2053-2061. [CrossRef] open in new tab
  66. Mushtaq, F.; Channa, A.S.; Mat, R.; Ani, F.N. Microwave assisted pyrolysis of waste biomass resources for bio-oil production. Appl. Mech. Mater. 2014, 554, 307-311. [CrossRef] open in new tab
  67. Kuan, W.H.; Huang, Y.F.; Chang, C.C.; Lo, S.L. Catalytic pyrolysis of sugarcane bagasse by using microwave heating. Bioresour. Technol. 2013, 146, 324-329. [CrossRef] [PubMed] open in new tab
  68. Mushtaq, F.; Abdullah, T.A.T.; Mat, R.; Ani, F.N. Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber. Bioresour. Technol. 2015, 190, 442-450. [CrossRef] [PubMed] Energies 2023, 16, 1829 24 of 26 open in new tab
  69. Liu, H.; Ma, X.; Li, L.; Hu, Z.; Guo, P.; Jiang, Y. The catalytic pyrolysis of food waste by microwave heating. Bioresour. Technol. 2014, 166, 45-50. [CrossRef] open in new tab
  70. Wang, Y.; Zeng, Z.; Tian, X.; Dai, L.; Jiang, L.; Zhang, S.; Wu, Q.; Wen, P.; Fu, G.; Liu, Y.; et al. Production of bio-oil from agricultural waste by using a continuous fast microwave pyrolysis system. Bioresour. Technol. 2018, 269, 162-168. [CrossRef] [PubMed] open in new tab
  71. Al-Rumaihi, A.; Shahbaz, M.; Mckay, G.; Mackey, H.; Al-Ansari, T. A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renew. Sustain. Energy Rev. 2022, 167, 112715. [CrossRef] open in new tab
  72. Li, Y.; Xing, B.; Ding, Y.; Han, X.; Wang, S. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocelluslosic biomass. Bioresour. Technol. 2020, 312, 1231614. [CrossRef] open in new tab
  73. Shao, S.; Liu, C.; Xiang, X.; Liu, X.; Zhang, H.; Xiao, R.; Ca, Y. In situ catalytic fast pyrolysis over CeO 2 catalyst: Impact of biomass source, pyrolysis temperature and metal ion. Renew. Energy 2021, 177, 1372-1381. [CrossRef] open in new tab
  74. Składeczek, F.; Głodek-Bucyk, E. Research of using low-temperature pyrolysis for processing of waste biomass to biochar. Sci. Work. Inst. Ceram. Build. Mater. 2017, 28, 50-61.
  75. Sieradzka, M.; Kirczuk, C.; Kalemba-Rec, I.; Mlonka-Mędrala, A.; Magdziarz, A. Pyrolysis of biomass wastes into carbon materials. Energies 2022, 15, 1941. [CrossRef] open in new tab
  76. Duan, D.; Chen, D.; Huang, L.; Zhang, Y.; Zhang, Y.; Wang, Q.; Xiao, G.; Zhang, W.; Lei, H.; Ruan, R. Activated carbon from lignocellulosic biomass as a catalyst: A review of the application in fast pyrolysis process. J. Anal. Appl. Pyrolysis 2021, 158, 105246. [CrossRef] open in new tab
  77. Pallaréz, J.; González-Cencerrado, A.; Arazuro, I. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenergy 2017, 115, 54-73. [CrossRef] open in new tab
  78. Köseoglu, C.; Akmil-Başar, C. Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv. Powder Technol. 2015, 26, 811-818. [CrossRef] open in new tab
  79. Tay, T.; Ucar, S.; Karagöz, S. Preparation and characterization of activated carbon from waste biomass. J. Hazard Mater. 2009, 165, 481-485. [CrossRef] [PubMed] open in new tab
  80. Saygili, H.; Güzel, F. High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: Process optimization, characterization and dyes adsorption. J. Clean. Prod. 2016, 113, 995-1004. [CrossRef] open in new tab
  81. Duan, D.; Feng, Z.; Dong, X.; Chen, X.; Zhang, Y.; Wan, K.; Wang, Y.; Wang, Q.; Xiao, G.; Liu, H. Improving bio-oil quality from low-density polyethylene pyrolysis: Effects of varying activation and pyrolysis parameters. Energy 2021, 232, 121090. [CrossRef] open in new tab
  82. Pan, J.; Jiang, J.; Xu, R. Adsorption of Cr(III) from acidic solutions by crop straw derived biochars. J. Environ. Sci. 2013, 25, 1957-1965. [CrossRef] open in new tab
  83. Agrafioti, E.; Kalderis, D.; Diamadopoulos, E. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J. Environ. Manag. 2014, 133, 309-314. [CrossRef] open in new tab
  84. Wnetrzak, R.; Leahy, J.J.; Chojnacka, K.W.; Saeid, A.; Novotny, E.; Jensen, L.S.; Kwapinski, W. Influence of pig manure biochar mineral content on Cr(III) sorption capacity. J. Chem. Technol. Biotechnol. 2014, 89, 569-578. [CrossRef] open in new tab
  85. Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466-478. [CrossRef] open in new tab
  86. Piechota, G.; Igliński, B. Biomethane in Poland: Current status, potential, perspective and development. Energies 2021, 14, 1517. [CrossRef] open in new tab
  87. Mierzawa-Hersztek, M.; Gondek, K.; Jewarz, M.; Dziedzic, K. Assessment of energy parameters of biomass and biochars, leachability of heavy metals and phytotoxicity of their ashes. J. Mater. Cycles Waste Manag. 2019, 21, 786-800. [CrossRef] open in new tab
  88. Karhu, K.; Mattila, T.; Bergstrom, I.; Regina, K. Biochar addition to agricultural soil increased CH 4 uptake and water holding capacity-Results from a short-term pilot field study. Agric. Ecosyst. Environ. 2011, 140, 309-313. [CrossRef] open in new tab
  89. Zhang, P.; Sun, H.; Yu, L.; Sun, T. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars. J. Hazard. Mater. 2013, 244-245, 217-224. [CrossRef] open in new tab
  90. Qiu, M.; Ling, Q.; Cai, Y.; Yu, S.; Wang, S.; Fu, D.; Hu, B.; Wang, X. Biochar for the removal of contaminants from soil and water: A review. Biochar 2022, 4, 19. [CrossRef] open in new tab
  91. Luo, J.; Sun, S.; Chen, X.; Lin, J.; Ma, R.; Zhang, R.; Fang, L. In-depth exploration of the Energy utilization and pyrolysis mechanism of advanced continuous microwave pyrolysis. Appl. Energy 2021, 292, 116941. [CrossRef] open in new tab
  92. Ren, X.; Ghazani, M.S.; Zhu, H.; Ao, W.; Zhang, H.; Moreside, E.; Zhu, J.; Yang, P.; Zhong, N.; Bi, X. Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review. Appl. Energy 2022, 315, 118970. [CrossRef] open in new tab
  93. Sait, H.H.; Hussain, A.; Bassyouni, M.; Ali, I.; Kanthasamy, R.; Ayodele, B.V.; Elhenawy, Y. Hydrogen-rich syngas and biochar production by the non-catalytic valorization of date palm seeds. Energies 2022, 15, 2727. [CrossRef] open in new tab
  94. Li, P.; Shi, X.; Wang, X.; Song, J.; Fang, S.; Bai, J.; Zhang, G.; Chang, C.; Pang, S. Bio-oil from biomass fast pyrolysis: Yields, related properties and energy consumption analysis of pyrolysis system. J. Clean. Prod. 2021, 328, 129613. [CrossRef] open in new tab
  95. Ringer, M.; Putsche, V.; Scahill, J. Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis; Technical report; National Renewable Energy Laboratory: Golden, CO, USA, 2006. Available online: www.nrel.gov/docs/fy07osti/37779. pdf (accessed on 22 January 2023). open in new tab
  96. Jaworski, T.J. Waste and biomass pyrolysis reactors. Piece Kotły 2017, 1, 1-7. Energies 2023, 16, 1829 25 of 26
  97. Li, X.; Peng, B.; Liu, Q.; Zhang, H. Microwave pyrolysis coupled with conventional pre-pyrolysis of the stalk for syngas and biochar. Bioresour. Technol. 2022, 348, 126745. [CrossRef] [PubMed] open in new tab
  98. Jahiril, M.I.; Rasul, M.G.; Chowdhury, A.A.; Ashwath, N. Biofuels production through biomass pyrolysis-A technical review. Energies 2012, 5, 4952-5001. [CrossRef] open in new tab
  99. Ronsse, F.; Dickinson, D.; Nachenius, R.; Prins, W. Biomass Pyrolysis and Biochar Characterization. Available online: https: //www.oeaw.ac.at/forebiom/WS1lectures/SessionII_Ronsse.pdf (accessed on 24 January 2023).
  100. Li, X.T.; Grace, R.; Lim, C.J.; Watkinson, A.P.; Chen, H.P.; Kim, J.R. Biomass gasification in a circulating fluidized bed. Biomass Bioenergy 2004, 26, 171-193. [CrossRef] open in new tab
  101. Marshall, A.J. Commercial Application of Pyrolysis Technology in Agriculture. 2013. Available online: https://ofa.on.ca/wp- content/uploads/2017/11/Pyrolysis-Report-Final.pdf (accessed on 26 January 2023). open in new tab
  102. Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68-94. [CrossRef] open in new tab
  103. Gao, A.; Wang, Y.; Lin, G.; Liu, B.; Hu, X.; Huang, Y.; Zhang, S.; Zhang, H. Volatile-char interactions during biomass pyrolysis: Reactor design toward product control. Renew. Energy 2022, 185, 1-7. [CrossRef] open in new tab
  104. Alves, V.R.D. Advances in the pyrolysis process and the generation of bioenergy. In Recent Perspectives in Pyrolysis Research; IntechOpen: London, UK, 2021; ISBN 978-1-83969-915-3.
  105. Hasan, M.M.; Rasul, M.G.; Khan, M.M.K.; Ashwath, N.; Jahirul, M.I. Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments. Renew. Sustain. Energy Rev. 2021, 145, 111073. [CrossRef] open in new tab
  106. Rahman, M.A.; Parvej, A.M.; Aziz, M. Concentrating technologies with reactor integration and effect of process variables on solar assisted pyrolysis: A critical review. Therm. Sci. Eng. Prog. 2021, 25, 100957. [CrossRef] open in new tab
  107. Garcia-Nunez, J.A.; Pelaez-Samaniego, M.R.; Garcia-Perez, M.E.; Fonts, I.; Abrego, J.; Westerhof, J.M.; Garcia-Perez, M. Historical developments of pyrolysis reactors: A review. Energy Fuels 2017, 31, 5751-5775. [CrossRef] open in new tab
  108. Parthasarathy, P.; Al-Ansari, T.; Mackey, H.R.; Narayanan, K.S.; McKay, G. A review on prominent animal and municipal wastes as potential feedstocks for solar pyrolysis for biochar production. Fuel 2022, 316, 123378. [CrossRef] open in new tab
  109. Ndukwu, M.C.; Horsfall, I.T.; Ubouh, E.A.; Orji, F.N.; Ekop, I.E.; Ezejiofor, N.R. Review of solar-biomass pyrolysis systems: Focus on the configuration of thermal-solar systems and reactor orientation. J. King Saud Univ.-Eng. Sci. 2021, 33, 413-423. [CrossRef] open in new tab
  110. Sobek, S.; Werle, S. Solar pyrolysis of waste biomass: Part 2 kinetic modeling and methodology of the determination of the kinetic parameters for solar pyrolysis of sewage sludge. Renew. Energy 2020, 153, 962-974. [CrossRef] open in new tab
  111. Boutin, O.; Lede, J.; Olalde, G.; Ferriere, A. Solar flash pyrolysis of biomass direct measurement of the optical properties of biomass components. J. Phys. Arch. 1999, 9, Pr3-367-Pr3-372. [CrossRef] open in new tab
  112. Rony, A.H.; Daniel, M.; Zhao, S.; Qin, D.; Yuan, Z.; John, H.B.; Fan, M. A novel solar powered biomass pyrolysis reactor for producing fuels and chemicals. J. Anal. Appl. Pyrolysis 2018, 132, 19-32. [CrossRef] open in new tab
  113. Sobek, S.; Werle, S. Solar pyrolysis of waste biomass: Part 1 reactor design. Renew. Energy 2019, 143, 1939-1948. [CrossRef] open in new tab
  114. Su, G.; Zulkifli, N.W.M.; Ong, H.C.; Ibrahim, S.; Bu, Q.; Zhou, R. Pyrolysis of oil palm wastes for bioenergy in Malaysia: A review. Renew. Sustain. Energy Rev. 2022, 164, 112554. [CrossRef] open in new tab
  115. Du, Z.; Li, Y.; Wang, X.; Wan, Y.; Chen, Q.; Wang, C.; Lin, X.; Liu, Y.; Chen, P.; Ruan, R. Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour. Technol. 2011, 102, 4890-4896. [CrossRef] [PubMed] open in new tab
  116. Sekar, M.; Mathimani, T.; Alagumalai, A.; Chi, N.T.L.; Duc, P.A.; Bhatia, S.K.; Brindhadevi, K.; Pugazhendhi, A. A review on the pyrolysis of algal biomass for biochar and bio-oil-Bottlenecks and scope. Fuel 2021, 283, 119190. [CrossRef] open in new tab
  117. Michalak, I.; Baśladyńska, S.; Mokrzycki, J.; Rutkowski, P. Biochar from a freshwater macroalga as a potential biosorbent for wastewater treatment. Water 2019, 11, 1390. [CrossRef] open in new tab
  118. Wang, H.E.; Wang, H.; Zhao, H.; Yan, Q. Adsorption and Fenton-like removal of chelated nickel from Zn-Ni alloy electroplating wastewater using activated biochar composite derived from Taihu blue algae. Chem. Eng. J. 2020, 379, 122372. [CrossRef] open in new tab
  119. Cheng, B.-H.; Zeng, R.J.; Jiang, H. Recent developments of post-modification of biochar for electrochemical energy storage. Bioresour. Technol. 2017, 246, 224-233. [CrossRef] open in new tab
  120. Zhou, Y.; Zhang, H.; Cai, L.; Guo, J.; Wang, Y.; Ji, L.; Song, W. Preparation and characterization of macroalgae biochar nanomaterials with highly efficient adsorption and photodegradation ability. Materials 2018, 11, 1709. [CrossRef] [PubMed] open in new tab
  121. Pourhosseini, S.E.M.; Norouzi, O.; Naderi, H.R. Study of micro/macro ordered porous carbon with olive-shaped structure derived from Cladophora glomerata macroalgae as efficient working electrodes of supercapacitors. Biomass Bioenergy 2017, 107, 287-298. [CrossRef] open in new tab
  122. Pourhosseini, S.E.M.; Norouzi, O.; Salimi, P.; Naderi, H.R. Synthesis of a novel interconnected 3D pore network algal biochar constituting iron nanoparticles derived from a harmful marine biomass as high-performance asymmetric supercapacitor electrodes. ACS Sustain. Chem. Eng. 2018, 6, 4746-4758. [CrossRef] open in new tab
  123. Ren, M.; Jia, Z.; Tian, Z.; Lopez, D.; Cai, J.; Titirici, M.-M.; Jorge, A.B. High performance n-doped carbon electrodes obtained via hydrothermal carbonization of macroalgae for supercapacitor applications. ChemElectroChem 2018, 5, 2686-2693. [CrossRef] open in new tab
  124. Zeng, J.; Wei, L.U.; Guo, X. Bio-inspired high-performance solid-state supercapacitors with the electrolyte, separator, binder and electrodes entirely from kelp. J. Mater. Chem. A 2017, 48, 25282-25292. [CrossRef] open in new tab
  125. Zhou, M.; Catanach, J.; Gomez, J.; Richins, S.; Deng, S. Effects of Nanoporous Carbon Derived from Microalgae and Its CoO Composite on Capacitance. ACS Appl. Mater. Interfaces 2017, 9, 4362-4373. [CrossRef] open in new tab
  126. Chaudhary, J.P.; Gupta, R.; Mahto, A.; Vadodariya, N.; Dharmalingm, K.; Sanna Kotrappanavar, N.; Meena, R. Self-doped interwoven carbon network derived from Ulva fasciata for all-solid supercapacitor devices: Solvent-free approach to a scalable synthetic route. ACS Appl. Mater. Interfaces 2019, 7, 174-186. [CrossRef] open in new tab
  127. Kang, D.; Liu, Q.; Gu, J.; Su, Y.; Zhang, W.; Zhang, D.I. "Egg-Box"-Assisted fabrication of porous carbon with small mesopores for high-rate electric double layer Capacitors. ACS Nano 2015, 9, 11225-11233. [CrossRef] open in new tab
  128. Zhang, H.; Luo, B.; Wu, K.; Zhao, B.; Yu, J.; Wang, S.; Tao, Y. Ex-situ catalytic pyrolysis of lignin using lignin-carbon (LG) catalyst combined with HZSM-5 to improve the yield of high-quality liquid fuels. Fuel 2022, 318, 123635. [CrossRef] open in new tab
  129. Sun, J.; Luo, J.; Lin, J.; Ma, R.; Sun, S.; Fang, L.; Li, H. Study of co-pyrolysis endpoint and product conversion of plastic and biomass using microwave thermogravimetric technology. Energy 2022, 247, 123547. [CrossRef] open in new tab
  130. Ayala-Cortés, A.; Lobato-Peralta, R.; Arreola-Ramos, C.E.; Martínez-Casillas, C.; Pacheno-Catalán, D.E.; Curntas-Gallegos, A.K.; Arancibia-Bulnes, C.A.; Villafán-Vidales, H.I. Exploring the influence of solar pyrolysis operation parameters on characteristics of carbon materials. J. Anal. Appl. Pyrolysis 2019, 140, 290-298. [CrossRef] open in new tab
  131. Wang, Z.; Burra, K.G.; Lei, T.; Gupta, A.K. Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review. Prog. Energy Combust. Sci. 2021, 84, 100899. [CrossRef] open in new tab
  132. Haeldermans, T.; Campion, L.; Kuppens, T.; Vanreppelen, K.; Cuypers, A.; Schreurs, S. A comparative techno-economic assessment of biochar production from different residue streams using conventional and microwave pyrolysis. Bioresour. Technol. 2020, 318, 124083. [CrossRef] [PubMed] open in new tab
  133. Ly, H.V.; Lee, B.; Sim, J.W.; Tran, Q.K.; Kim, S.-S.; Kim, J.; Brigljević, B.; Hwang, H.T.; Lim, H. Catalytic pyrolysis of spent coffee waste for upgrading sustainable bio-oil in bubbing fluidized-bed reactor: Experimental and techno-economic analysis. Chem. Eng. J. 2022, 427, 130956. [CrossRef] open in new tab
  134. Wang, L.; Lei, H.; Ruan, R. Techno-economic analysis of microwave-assisted pyrolysis for production of biofuels. In Production of Biofuels and Chemicals with Microwave; Fang, Z., Smith, J.R.L., Qi, X., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 251-263. [CrossRef] open in new tab
  135. Li, H.; Xu, J.; Nyambura, S.M.; Wang, J.; Li, C.; Zhu, X.; Feng, X.; Wang, Y. Food waste pyrolysis by traditional heating and microwave heating: A review. Fuel 2022, 324, 124574. [CrossRef] open in new tab
  136. Malińska, K.; Dach, J. Potential applications of biochar for composting. Inż. Ekol. 2014, 36, 28-39. open in new tab
  137. Bridgwater, A.V.; Toft, A.J.; Brammer, J.G. Techno-economic comparison of power production by biomass fast pyrolysis, with gasification and combustion. Renew. Sustain. Energy Rev. 2002, 6, 181-248. [CrossRef] open in new tab
  138. Hess, J.R.; Kenney, K.; Laney, P.; Muth, D.; Pryfogle, P.; Radtke, C. Feasibility of a Producer Owned Ground-Straw Feedstock Supply System for Bioethanol and Other Products; Report INL/EXT-06-11815; Idaho National Laboratory: Falls, Idaho, 2006. open in new tab
  139. Rogers, J.G.; Brammer, J.G. Estimation of the production cost of fast pyrolysis bio-oil. Biomass Bioenergy 2012, 36, 208-217. [CrossRef] open in new tab
  140. Yahya, S.A.; Iqbal, T.; Omar, M.M.; Ahmad, M. Techno-economic analysis of fast pyrolysis of date palm waste for adoption in Saudi Arabia. Energies 2021, 14, 6048. [CrossRef] open in new tab
  141. Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Verified by:
No verification

seen 27 times

Recommended for you

Meta Tags